
Towards Truly Adaptive Byzantine Fault-Tolerant Consensus

Chenyuan Wu
University of Pennsylvania

Haoyun Qin
University of Pennsylvania

Mohammad Javad Amiri
Stony Brook University

Boon Thau Loo
University of Pennsylvania

Dahlia Malkhi
UC Santa Barbara

Ryan Marcus
University of Pennsylvania

Abstract
To acheive maximum performance, Byzantine fault-tolerant
(BFT) systems must be manually tuned when hardware, net-
work, or workload properties change. This paper presents our
vision for a reinforcement learning (RL) based Byzantine
fault-tolerant (BFT) system that adjusts effectively in real-
time to changing fault scenarios and workloads. We identify
several variables that can impact the performance of a BFT
protocol, and show how these variables can serve as features
in an RL engine in order to choose the context-dependent best-
performing BFT protocol in real-time. We further outline a
decentralized RL approach capable of tolerating adversarial
data pollution, where nodes share local metering values and
reach the same learning output by consensus.

1 Introduction

Byzantine fault-tolerant (BFT) consensus protocols are the
core engines powering the state machine replication (SMR)
paradigm, ensuring that non-faulty replicas execute client re-
quests in the same order, despite the existence of f Byzantine
replicas. The ability to tolerate up to f arbitrary failures makes
BFT protocols a key component in various distributed sys-
tems, including permissioned blockchains [5, 29], distributed
file systems [14, 17], locking services [18], firewalls [20, 21],
key-value stores [19, 22], and SCADA systems [7, 27].

BFT protocols differ across several dimensions, with each
protocol making different assumptions about the incoming
workload, possible attacks, network configurations, and the
underlying hardware. The proliferation of different BFT pro-
tocols has made it difficult to determine the best protocol
for a given scenario. Worse yet, the ideal BFT protocol may
change over time, since workloads, network conditions, and
adversarial behaviors can frequently change. This is exacer-
bated in blockchain systems, which must additionally support
a diverse set of applications.

While there have been multiple attempts to address these
challenges (e.g., Abstract [6, 23] and ADAPT [8]), such solu-

tions suffer from either (1) a lack of flexibility or (2) opera-
tional limitations. For example, when Abstract detects slow
progress, current requests are aborted and a predefined alter-
native protocol is selected. While this approach can avoid
long stalls, flexibility is limited since the switching order is
pre-defined, and the system might fail to switch to the optimal
protocol for the current context. ADAPT, on the other hand,
uses supervised learning where a single replica collects data,
trains the learning model, and then distributes the decision to
all other replicas. Such a centralized mechanism, however, is
an operational limitation in Byzantine environments.

How can we build a system with the required flexibility to
achieve high performance in a wide variety of scenarios, but
simultaneously avoid the operational limitations that come
with centralized solutions? In this paper, we articulate our
vision for a reinforcement learning (RL) based Byzantine
fault-tolerant system. At a high level, given a performance
metric to optimize, our proposed system will smartly adapt to
changes by switching between a set of BFT protocols at run-
time. Instead of manually choosing from a set of alternative
BFT protocols for deployment, or running a prolonged data
collection process before the deployment, we only require
running one system that automatically re-configures itself to
implement a top-performing protocol in real-time.

Intuitively, our approach works by building a comprehen-
sive performance model capable of capturing different factors
that impact the performance of a BFT protocol. By formu-
lating the selection of a BFT protocol as a contextual multi-
armed bandit problem [37], the RL engine strategically tests
different protocols at run-time to learn which ones are well-
suited to the current system conditions. Such RL process is
coordinated in a decentralized manner, where nodes share lo-
cal features/rewards by consensus and reach the same learning
output, achieving resilience to adversarial data pollution.

2 The Case for Reinforcement Learning

Why use reinforcement learning [34] for BFT protocol se-
lection? Prior work [4] has shown that no single BFT pro-

15

J.C. Peeples
Cross-Out

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689051.3689055&domain=pdf&date_stamp=2024-08-14

tocol is always “better” or “worse” than others, but rather
that the performance of each protocol is context dependent.
One could imagine building heuristics (or supervised learning
models) that map conditions to the best-performing protocol,
and switching protocols at run-time according to the current
perceived conditions. However, such approaches suffer from
several drawbacks.

1. Space size. The number of factors that can impact the
performance of a BFT protocol is surprisingly large [4]:
request and reply size, request arrival rate, execution
overhead, transaction contention, and different failure
scenarios can all have an impact. Even with coarse-
grained sampling and an automated toolkit, experimen-
tally exploring just a small subset of the condition space
would take a long time. Unfortunately, building good
heuristics and supervised models requires complete data,
which are hard to obtain.

2. Hardware and time dependence. Even if the entire
space could be mapped, the mapping from conditions
to the best-performing protocol depends on the under-
lying hardware and system configuration. In cloud en-
vironments, these conditions can change arbitrarily [9]
or even adversarially [35], rendering any pre-computed
mapping on a specific network less useful.

3. New protocols. When new BFT protocols emerge (e.g.,
HotStuff-2 [30]) or changes are introduced to existing im-
plementations (e.g., DiemBFT-v1 to v4 [1]), any precom-
puted mapping would need to be recomputed. In other
words, one would need to re-collect data and re-craft the
heuristics or retrain the supervised model virtually every
time a new BFT consensus protocol is proposed.

Reinforcement learning addresses this daunting and com-
plex task and has shown superior performance in other learned
systems [15, 25, 31, 32, 36, 38]. While supervised learning as-
sumes training data is complete, and thus requires a separate
lengthy data collection process prior to deployment, rein-
forcement learning allows one to simply “plug-and-play:” RL
systems learn from their mistakes and optimizes long-term re-
wards through trials in an online fashion. With reinforcement
learning, an adaptive system can optimize itself to whatever
client workloads, faults, hardware, system configurations and
BFT protocols present, providing adaptivity and significant
operational benefits.

3 Overview

A high-level overview of our proposed systems is shown in
Figure 1. Our RL-based BFT system contains three key com-
ponents: (1) a reinforcement learning algorithm (i.e., the core
of the learning agent) that guides the choice of BFT protocols
according to the perceived underlying dynamic environment,

Figure 1: Overview of the proposed system. For readability,
we only present the internals of one node i.

(2) a coordination protocol that collects data in a distributed
fashion at run-time, and (3) a switching mechanism that al-
lows a seamless transition from one BFT protocol to another
while ensuring safety and liveness.

Our proposed system operates in epochs, where each epoch
is marked by the completion of k blocks. Here, k is a prede-
fined constant hyper-parameter. Within one epoch, the pro-
tocol remains unchanged. When the learning agent finds a
protocol candidate, it instructs the validator to use that proto-
col for the next epoch.

Learning agent. The learning agent models the problem of
selecting a BFT protocol as a contextual multi-armed bandit
(CMAB) problem [37]: periodically, the agent examines the
most recent state of the workload and faults in the system
(context), and then selects one of many BFT protocols (arms)
in our protocol pool. After making the selection, it observes
the performance of the newly selected protocol (reward). To
be successful, the agent must balance the exploration of new,
untested protocols with exploiting past experience to maxi-
mize performance. That is, without a careful balance of ex-
ploration and exploitation, the agent risks failing to discover
an optimal protocol (too much exploitation), or performing
no better than random (too much exploration). We select this
CMAB formulation (as opposed to full reinforcement learn-
ing) because CMABs are exceptionally well-studied, enable
faster convergence, and many asymptotically-optimal algo-
rithms exist to solve them [2, 16]. Details about the learning
algorithms are provided in Section 4.1 to Section 4.3.

Since we consider a Byzantine environment, a centralized
learning agent cannot be trusted. We consider each valida-
tor process to have a companion learning agent running on
the same node, and accepting instructions only from its com-
panion learning agent. The learning agents themselves also
form a replicated state machine. Specifically, they start with
the same initial state, i.e., the same random seed of machine
learning models. For the same epoch t, as we will show later,
different learning agents agree on the same sequence of oper-
ations, i.e., training data points where each data point consists
of context and reward. With deterministic training, benign
learning agents host the same parameters for their machine

16

learning models. As a result, if different learning agents per-
ceive the same context for epoch t +1, they will render the
same decision (i.e., choice of protocol) for epoch t +1.

Distributed online data collection. In a Byzantine environ-
ment, no centralized entity could be trusted to collect training
data. Therefore, the learning agents also participate in a pro-
tocol that coordinates distributed data collection in an online
fashion. At a high level, for every epoch, each learning agent
monitors its local context and reward at runtime, then ex-
changes them with other agents via a separate instance of
BFT consensus independent of the consensus that validators
are running. For each epoch, agents form agreement over an
aggregation of contexts and rewards that include input from
at least a quorum of two-thirds of agents. The consensus al-
gorithm used for forming this agreement is left open for the
system designer (note that it is invoked only once per epoch,
hence does not need to have high throughput). Once an agreed
quorum of local contexts and rewards is obtained, each learn-
ing agent can apply the same robustness filter to the quorum
in order to get a global context and reward, constituting a
training data point. Details about this learning-coordination
protocol are provided in Section 4.4.

Switching BFT protocols. After a BFT protocol is selected
by the learning agent, the switching mechanism allows each
validator to make use of this protocol for the next epoch.
The switching mechanism can be implemented based on Ab-
stract [6], which aborts a BFT instance if a certain progress
condition is not met. An epoch then is equivalent to a Backup
instance in Abstract.

Figure 1 presents an overview of the system, where each
node in the system follows the same workflow as depicted. In
the middle of epoch t, when the number of executed blocks
reaches a certain watermark, the validator on node i notifies its
local learning agent. The learning agent featurizes its current
local state (i.e., context) observed in epoch t, and uses it to
approximate the next local state statet+1

i for epoch t+1. Each
agent exchanges statet+1

i and its locally measured reward of
previous epoch rewardt−1

i with other agents via the learning-
coordination protocol. Therefore, each agent obtains the same
global state statet+1 and reward rewardt−1. Subsequently,
each agent adds the (statet−1, protocolt−1,rewardt−1) triplet
to its experience buffer, and retrains its predictive model Mθ

based on its experience buffer as well as the chosen algorithm
to solve CMAB. Once retrained, the predictive model Mθ

inferences the performance of each protocol candidate under
statet+1, and selects protocolt+1 that is predicted to have
the best performance. The learning agent then informs the
validator to switch to protocolt+1 for epoch t +1, the reward
of which is then measured locally upon reaching the end
of epoch t +1. The validator only starts epoch t +1 once it
receives a decision for that epoch from the companion agent.

The learning agent is designed in a way such that the BFT
system is not delayed due to learning. First, within one epoch,

when the model undergoes retraining and inference, the par-
allel validator process still commits blocks simultaneously.
Second, with a lightweight model design and limiting the size
of the experience buffer, model training and inference can
be viewed as a synchronous process. In other words, with a
reasonable epoch length, the learning agent can complete pro-
tocol selection before the validator finishes its current epoch,
without impeding the start of the next epoch.

4 Learning Algorithms

This section delves into learning algorithms. We first formal-
ize the learning problem and explain the use of Thompson
sampling. The state and action space design is then outlined,
followed by the predictive model description and learning
coordination.

4.1 Problem Formulation

We formulate the learning problem as a contextual multi-
armed bandit (CMAB) problem, where an agent periodically
makes decisions in a sequence of epochs. In epoch t, the
agent selects an action at in its protocol pool based on a
provided state st , and then receives a reward rt . The agent’s
goal is to select actions in a way that minimizes regret, i.e., the
difference between the reward sum associated with an optimal
selection strategy and the reward sum associated with the
chosen actions. CMABs assume that epochs are independent
from each other, and that the optimal action depends only
on the state st . Since the current choice of protocol does not
affect the pattern of workloads and faults in future epochs,
CMAB could be a reasonable choice for BFT protocols. Using
this CMAB formulation, users will be able to specify any
performance metric (e.g., throughput or latency) as the reward
function to optimize.

Thompson sampling. Amongst different CMAB algorithms,
we select Thompson sampling [2, 16] for its simplicity: at
the start of each epoch, the learning agent trains a model
based on current experience, and then selects the best action
as predicted by the model. In Thompson sampling, instead
of selecting the model parameters that are most likely given
the training data as used by supervised learning, it samples
model parameters proportionally to their likelihood given
the training data. More formally, we can define maximum
likelihood estimation as finding the model parameters θ that
maximize likelihood given experience E: argmaxθ P(θ | E)
(assuming a uniform prior). Instead of maximizing likelihood,
Thompson sampling simply samples from the distribution
P(θ | E). As a result, if we have a lot of data suggesting that
our model weights should be in a certain part of the parameter
space, our sampled parameters are likely to be in that part of
the space. Conversely, if we have only a small amount of data
suggesting that our model weights should be in a certain part

17

of the parameter space, we may or may not sample parameters
in that part of the space during any given epoch.

4.2 State and Action Space
We next list factors that affect the performance of BFT pro-
tocols, broadly grouped into workloads, faults, and hard-
ware/system configurations categories, jointly constituting
the state space. Within each epoch, each learning agent lever-
ages a window of the last w executed requests to featurize
such factors, where w is a constant hyper-parameter.
State 1: Workloads (W). The first category consists of factors
that are influenced by application and client dynamics.
W1: Request size. The request size is dependent on the ap-
plication workload, where some requests contain little data
while others are more involved and require updating files
with large chunks of data. Although most protocols separate
request dissemination from sequencing (i.e., only the leader
proposals contain the actual requests while the remaining
messages contain the hash of requests), request size is still
an important factor impacting the performance of different
protocols in different ways. We use the average request size
to represent this feature.
W2: Reply size. Depending on the application, request and re-
ply size can be asymmetric. Reply size also impacts different
protocols in different ways, but with a distinct boundary from
that of request size. We use the average reply size to represent
this feature.
W3: Load on system. The load on the BFT system is depen-
dent on the number of clients and the rate at which clients
send new requests. Specifically, each honest client allows a
quota of outstanding unacknowledged requests before issuing
new ones, controlling the rate at which requests are generated
relative to the system’s capacity to process them.
W4: Execution overhead. Execution overhead captures the
computational cost of request execution, which impacts the
system in two ways. First, it directly affects the execution la-
tency in state machine replication. Second, it indirectly affects
other components of the BFT protocol that are also compute-
intensive. For instance, requests with high execution overhead
compete for CPU resources that are otherwise used to sign
and verify messages, especially when machines have limited
compute capacity or a small number of cores. Higher compute
load results in excessive context switching, and potentially
pushes the system towards being compute-bound instead of
network-bound. We use the CPU cycles consumed by the
executor thread to represent this feature.
State 2: Faults (F). The next category of factors is tied to
faulty behaviors. BFT protocols make different assumptions
about “steady state” and “common faults”, and hence, each
protocol is often optimized for specific fault scenarios. The
features below help in identifying the type of fault scenarios
the system is experiencing and choose the most promising
protocol accordingly.

Note that these features do not aim to defend against tran-
sient or broad-spectrum faults. An example of transient fault
is a crashed leader or a malicious leader which equivocates,
such that no progress is made and a view-change will be trig-
gered to replace the leader. Such transient faults are handled
timely at the protocol level and require no protocol switching.
For broad-spectrum faults, orthogonal and effective solutions
exist. Examples of broad-spectrum faults include network
flooding which can be mitigated via resource isolation [6],
and malformed client requests which can be handled by en-
forcing client signatures (instead of MACs) [18].
F1: Absence from participation. In BFT consensus, valida-
tors can be absent from participation for various reasons: a
(benignly) crashed validator is absent from all protocol phases
after crashing, while an alive malicious validator could be ab-
sent from any arbitrary phases.

Measuring absence is tricky in a Byzantine environment,
especially considering that a collusion of f malicious partici-
pants could taint validator participation simply by excluding
some alive benign validators (up to f) and progressing with-
out them. For example, a malicious leader could deliberately
avoid sending leader proposals to them, while the f malicious
validators work together with the remaining f + 1 benign
ones to make sure all requests are committed successfully on
these 2 f +1 validators. We refer to such excluded, non-faulty
validators as being placed in-dark. In-dark validators could
further be excluded in other protocol phases, in addition to
leader proposals, by f malicious validators. Since no state
transition is ever triggered on in-dark validators, they remain
in the initial state and are thus absent from participation. Al-
though they will timeout and complain, since fewer than f +1
validators complain, view-change is not triggered to replace
the malicious leader and they are in-dark continuously.

All protocols tolerate the absence of up to f validators
by design, but the performance of different protocols is im-
pacted differently. In particular, dual-path protocols (e.g.,
Zyzzyva [28], SBFT [24]) are adversely impacted since the
more expensive slow paths are initiated, while single-path
protocols (e.g., PBFT [13, 14]) could be positively impacted
due to less resource consumption.

The learning agents can featurize absence by utilizing in-
formation that is already collected locally during protocol
execution. First, fast path ratio captures the percentage of
slots committed in the fast path over the total number of com-
mitted slots. For single-path protocols, all slots are committed
in the slow path. Second, for each slot, the agent sums the
number of (valid) distinct messages from each sender, deriv-
ing the number of received messages per slot. Note that this
feature does not require more messages to be sent or received;
it simply counts messages as they arrive and pass preliminary
processing (de-serializing and sender verification) before they
can be excluded from protocol steps like voting.
F2: Slowness of proposal. In leader-based BFT protocols, ev-
ery slot is initiated by a leader proposal, which significantly

18

affects the system’s end-to-end performance. In the case of
a faulty leader, validators use a timer to trigger view-change,
which will replace the leader, hence guaranteeing liveness.
However, a malicious leader can deliberately slow down its
proposals without being replaced, resulting in poor latency
and throughput. Slowness may not necessarily be a deliberate
act by a malicious leader, it could result simply from a weak
or overloaded leader, albeit to a lighter extent. In general,
protocols with routine or proactive leader replacement (e.g.,
HotStuff-2 [30], Prime [3]) maintain good performance under
such slowness, but perform sub-optimally in other normal
cases. To featurize this factor, each node needs to timestamp
every leader proposal received, and measures the average time
interval between receiving two consecutive proposals.
State 3: Hardware and system configurations. The last
category comprises hardware and system configurations.
Hardware-level factors include standard data-center infras-
tructure network settings that affect network latency and band-
width, and also machine-level configurations such as CPU
frequency and the number of cores. System-level configura-
tions include the number of nodes in the consensus system
and the geo-distribution of the nodes. Compared to workload
and faults, both hardware and system configurations are fairly
static and do not change rapidly at the timescale of a consen-
sus deployment. Thus, there is no need to explicitly featurize
these factors because (1) the impact of these factors can be im-
plicitly encoded in the predictive model trained online, and (2)
CMABs will converge even without any explicit features [10],
the purpose of which is to accelerate convergence so that the
optimal action is reached before the world changes.
Actions. The action space consists of the set of BFT protocols.
Here, we pick six representative protocols: PBFT [13, 14],
Zyzzyva [28], CheapBFT [26], Prime [3], SBFT [24] and
HotStuff-2 [30]. All six protocols are leader-based, working
in the partial synchrony settings with networks of n = 3 f +1
nodes.

4.3 Predictive Model

Each learning agent hosts some predictive models, which
follow the value based RL approach: given the featurized
current state, predict the performance (i.e., reward) of each
action (i.e., protocol). The simplest implementation would
be to build a single predictive model for all protocols, but
this has a major drawback. While features W1-W4 in the
workloads category are completely independent from the pre-
vious action, the featurized absence-from-participation F1
and slowness-of-proposal F2 have a “one-step dependency”:
the current observed statet+1

F1,F2 is dependent on the previous
protocolt . When the workload and fault scenario shift, such
one-step dependency might prevent convergence to the new
optimal protocol. For instance, if the system has converged
to protocols whose leader has lower parallelism (e.g., Prime
due to message aggregation in global ordering), the measured

slowness of proposals will be higher than other protocols,
regardless of whether a fault is actually happening or not. In
other words, the interpretation of the slowness-of-proposal
feature changes based on the previous action. If the model
learns that a high slowness-of-proposal is bad for Zyzzyva,
then once Prime is chosen, slowness-of-proposal will always
seem high, and Zyzzyva may not ever be selected again.

Luckily, unlike in the general case of Markov decision pro-
cesses, the dependency observed here is limited to a single
time step. That is, the prediction of the next best action is
independent given the immediately prior action. To solve
this issue rooted in one-step dependency, the learning agent
trains a separate model for each possible (previous protocol,
protocol) pair, and divides the experience buffer into several
smaller buckets according to the (previous protocol, protocol)
pair as well. In terms of bandit theory, assuming there are K
protocols in the action space, the proposed approach is equiv-
alent to playing K bandit games where each game has K arms.
In each game, the current observed statet+1

F1,F2 is independent
from the previous action protocolt .

It is worth mentioning that this transformation does not
completely remove the one-step dependency. The action made
at epoch t will determine which of the K bandit games is being
played at epoch t +1. A multi-armed bandit algorithm will
not be able to take advantage of the fact that some of the
K bandits may have significantly better reward distributions
than others. Thus, the convergence bound on regret of bandit
algorithms will not apply to our scenario. However, since
each of the K bandits will be played an unbounded number
of times eventually (assuming the probability of any action
never fully reaches 0), regret is still bounded in the limit.

Specifically, for each possible (protocolt , protocolt+1)
pair, a lightweight random forest [12] can be used as the pre-
dictive model, which is trained exclusively on the correspond-
ing experience bucket. The model takes the featurized state
as input, and outputs the predicted performance for the cor-
responding candidate action protocolt+1. Thus, at inference
time, given a known previous protocol and the current state,
the learning agent enumerates K models to get the predicted
performance for each candidate protocol, and then chooses
the candidate with the best predicted performance to be car-
ried out. Once there is a tie on the best predicted performance,
we break the tie randomly to avoid local maxima. When an
experience bucket is empty, the system prioritizes exploring
this bucket by choosing the corresponding candidate protocol
to be carried out.
Integration with Thompson sampling. Integrating a pre-
dictive model with Thompson sampling requires the ability
to sample model parameters from P(θ | E) — the distribu-
tion of model parameters given the current experience. The
simplest technique (which has been shown to work well in
practice [33]) is to train the model as usual, but only on a boot-
strap [11] of the training data. In other words, the predictive
model is trained using |E| random samples drawn with re-

19

placement from experience E, inducing the desired sampling
properties. This bootstrapping technique can be used on each
experience bucket and predictive model for its simplicity.
Overhead of learning. First, training overhead is not sup-
posed to be larger than the strawman of building a single
predictive model, since in every epoch, only one model which
corresponds to the updated bucket needs to be retrained. For
such a bucket, the time complexity for training a single ran-
dom forest is O(n logn), where n is the number of data points.
Thus, given the same total population of data, it even incurs
less training overhead than the strawman solution, since the
bucket contains fewer data points than the single unified expe-
rience buffer. Second, the inference overhead is O(K), where
K is the number of candidate protocols. Lastly, the mem-
ory overhead would be the same as the strawman for storing
training data. However, it incurs O(K2) memory overhead for
storing the models. Since random forest is a very lightweight
model as compared to deep neural networks, such model stor-
age overhead is negligible.

4.4 Learning Coordination
The goal of the learning-coordination mechanism is to form
an agreement at each epoch on a report quorum that includes
local metrics collected from 2 f +1 nodes.

Specifically, learning coordination is performed in every
epoch t. After executing w requests (a hyper-parameter) in
epoch t, each node i gathers local performance indicators
pt−1

i measured during epoch t − 1, featurizes the next state
f t+1
i , and broadcasts both metrics inside a report message. To

ensure that at least f + 1 metrics in the report quorum are
honest measurements, it is important that the metrics reported
by honest nodes are measured by themselves. That is, if a
node j has been placed in-dark (defined in Section 4.2) or
temporarily slows down during epoch t, it may not have exe-
cuted w requests by itself. Rather, node j will have recovered
the consensus state through a state-transfer from other nodes.
In this case, j should avoid reporting the state features it has
copied from others, and likewise, avoid reporting performance
indicators collected from partial or no execution. Therefore,
node j will not report any metrics for epoch t. Note that in
addition to the f benign nodes being placed in-dark, in the
meantime, the f Byzantine nodes that contributed to commit-
ting requests can refuse to report their metrics. Hence, there
may not be enough 2 f +1 nodes reporting for the epoch.

In order for nodes to agree on a quorum of (valid) reports
to be used as input for the learning engine, any “blackbox”
validated Byzantine consensus primitive (VBC) seeded with
a leader collecting reports from 2 f +1 nodes can be utilized.
Specifically, for each epoch t, the leader of VBC initiates
VBC-PROPOSE((t,reportQCt), P) once it receives valid report
messages (pt−1

i , f t+1
i) where both fields are non-null from

2 f +1 nodes, or when a timer expires. Here, P is an external
validity predicate that checks if reportQCt includes at least

f +1 distinct reports.
Each node participating in VBC gates voting for a leader

proposal it receives by applying the validity predicate P to it.
Once a quorum of reports reportQCt is decided by VBC, if it
includes sufficient 2 f +1 reports, each node takes the median
value of each field in order to obtain a robust global per-
formance measurement pt−1 and state feature f t+1, thereby
triggering the retraining and inference process. Taking the
median value from an aggregated set of metrics guarantees
that despite f arbitrarily manipulated values from Byzantine
nodes, the global value taken is between two honest mea-
surement values. Otherwise, if reportQCt does not include
sufficient reports, each node retains the decision from the
previous epoch instead of deriving any new learning deci-
sion, and complains about the leader in VBC as well as the
leader in the current protocol used by the node for committing
client requests. Note that since VBC is a separate consensus
instance, the leader of VBC can be different from the leader
of the current protocol. Either of them acting maliciously can
result in insufficient reports being collected.

5 Conclusion

Existing BFT protocols lack flexibility and adaptability, lead-
ing to suboptimal performance in various scenarios. In this
paper, we articulate our vision for a practical reinforcement
learning-based BFT system, which dynamically selects the
top-performing BFT protocols in real-time.

References

[1] The diem team. https://developers.diem.com/papers/diem-
consensus-state-machine-replication-in-the-diem-
blockchain/2021-08-17.pdf, 2021.

[2] Shipra Agrawal and Navin Goyal. Further optimal regret
bounds for thompson sampling. In The International
Conference on Artificial Intelligence and Statistics, AIS-
TATS ’13.

[3] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane.
Prime: Byzantine replication under attack. Transactions
on Dependable and Secure Computing, 8(4):564–577,
2011.

[4] Mohammad Javad Amiri, Chenyuan Wu, Divyakant
Agrawal, Amr El Abbadi, Boon Thau Loo, and Mo-
hammad Sadoghi. The bedrock of byzantine fault tol-
erance: A unified platform for bft protocols analysis,
implementation, and experimentation. In Symposium on
Networked Systems Design and Implementation (NSDI).
USENIX Association, 2024.

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,

20

David Enyeart, Christopher Ferris, Gennady Laventman,
and Yacov Manevich. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In Eu-
ropean Conf. on Computer Systems (EuroSys), pages
30:1–30:15. ACM, 2018.

[6] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The next 700 bft
protocols. Transactions on Computer Systems (TOCS),
32(4):12, 2015.

[7] Amy Babay, John Schultz, Thomas Tantillo, Samuel
Beckley, Eamon Jordan, Kevin Ruddell, Kevin Jordan,
and Yair Amir. Deploying intrusion-tolerant scada for
the power grid. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 328–335. IEEE, 2019.

[8] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker.
Making bft protocols really adaptive. In Int. Parallel
and Distributed Processing Symposium, pages 904–913.
IEEE, 2015.

[9] Sean Kenneth Barker and Prashant Shenoy. Empiri-
cal evaluation of latency-sensitive application perfor-
mance in the cloud. In Proceedings of the First An-
nual ACM SIGMM Conference on Multimedia Systems,
MMSys ’10, pages 35–46. ACM. tex.acmid= 1730842
tex.numpages= 12.

[10] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochas-
tic multi-armed-bandit problem with non-stationary re-
wards. In Advances in neural information processing
systems, NIPS ’14, pages 199–207.

[11] Leo Breiman. Bagging predictors. In Machine Learning,
Maching Learning ’96.

[12] Leo Breiman. Random forests. 45(1):5–32.

[13] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 173–186.
USENIX Association, 1999.

[14] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. Transactions on
Computer Systems (TOCS), 20(4):398–461, 2002.

[15] Lujing Cen, Ryan Marcus, Hongzi Mao, Justin
Gottschlich, Mohammad Alizadeh, and Tim Kraska.
Learned garbage collection. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL @ PLDI
’20. ACM.

[16] Olivier Chapelle and Lihong Li. An empirical evalu-
ation of thompson sampling. In Advances in neural
information processing systems, NIPS’11.

[17] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang
Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright cluster services. In Symposium on Operating
Systems Principles (SOSP), pages 277–290. ACM, 2009.

[18] Allen Clement, Edmund L Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
Symposium on Networked Systems Design and Imple-
mentation (NSDI), volume 9, pages 153–168. USENIX
Association, 2009.

[19] Dan Dobre, Ghassan Karame, Wenting Li, Matthias Ma-
juntke, Neeraj Suri, and Marko Vukolić. Powerstore:
Proofs of writing for efficient and robust storage. In
Conf. on Computer and communications security (CCS),
pages 285–298. ACM, 2013.

[20] Miguel Garcia, Nuno Neves, and Alysson Bessani. An
intrusion-tolerant firewall design for protecting siem
systems. In Conf. on Dependable Systems and Networks
Workshop (DSN-W), pages 1–7. IEEE, 2013.

[21] Miguel Garcia, Nuno Neves, and Alysson Bessani.
Sieveq: A layered bft protection system for critical ser-
vices. IEEE Transactions on Dependable and Secure
Computing, 15(3):511–525, 2016.

[22] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and
Michael K Reiter. Efficient byzantine-tolerant erasure-
coded storage. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 135–144. IEEE, 2004.

[23] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. The next 700 bft protocols. In European
conf. on Computer systems (EuroSys), pages 363–376.
ACM, 2010.

[24] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael K Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
Sbft: a scalable decentralized trust infrastructure for
blockchains. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 568–580. IEEE/IFIP, 2019.

[25] Amin Kamali, Verena Kantere, Calisto Zuzarte, and Vin-
cent Corvinelli. Roq: Robust query optimization based
on a risk-aware learned cost model.

[26] Rüdiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
Cheapbft: resource-efficient byzantine fault tolerance.
In European Conf. on Computer Systems (EuroSys),
pages 295–308. ACM, 2012.

21

[27] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei,
and Paul Skare. Survivable scada via intrusion-tolerant
replication. IEEE Transactions on Smart Grid, 5(1):60–
70, 2013.

[28] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
byzantine fault tolerance. Operating Systems Review
(OSR), 41(6):45–58, 2007.

[29] Jae Kwon. Tendermint: Consensus without mining.
2014.

[30] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal
two-phase responsive bft. Cryptology ePrint Archive,
2023.

[31] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning scheduling algorithms for data processing clus-
ters.

[32] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Making learned query optimization practical. In Pro-
ceedings of the 2021 International Conference on Man-

agement of Data, SIGMOD ’21. Award: ’best paper
award’.

[33] Ian Osband and Benjamin Van Roy. Bootstrapped
thompson sampling and deep exploration.

[34] Richard S. Sutton and Andrew G. Barto. Introduction
to Reinforcement Learning. MIT Press, 1st edition.

[35] Venkatanathan Varadarajan, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. A placement vulnera-
bility study in {Multi-Tenant} public clouds. USENIX
Security ’15, pages 913–928.

[36] Chenyuan Wu, Bhavana Mehta, Mohammad Javad
Amiri, Ryan Marcus, and Boon Thau Loo. AdaChain:
A learned adaptive blockchain. Proc. of the VLDB En-
dowment, 16(8):2033–2046, 2023.

[37] Li Zhou. A survey on contextual multi-armed bandits.

[38] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen,
Andreas Pfadler, Ziniu Wu, and Jingren Zhou. Lero: A
learning-to-rank query optimizer. 16(6):1466–1479.

22

