
BFTBrain: Adaptive BFT Consensus with Reinforcement Learning

Chenyuan Wu
University of Pennsylvania

Haoyun Qin
University of Pennsylvania

Mohammad Javad Amiri
Stony Brook University

Boon Thau Loo
University of Pennsylvania

Dahlia Malkhi
UC Santa Barbara

Ryan Marcus
University of Pennsylvania

Abstract
This paper presents BFTBrain, a reinforcement learning (RL)
based Byzantine fault-tolerant (BFT) system that provides
significant operational benefits: a plug-and-play system suit-
able for a broad set of hardware and network configurations,
and adjusts effectively in real-time to changing fault scenar-
ios and workloads. BFTBrain adapts to system conditions
and application needs by switching between a set of BFT
protocols in real-time. Two main advances contribute to BFT-
Brain’s agility and performance. First, BFTBrain is based on
a systematic, thorough modeling of metrics that correlate the
performance of the studied BFT protocols with varying fault
scenarios and workloads. These metrics are fed as features to
BFTBrain’s RL engine in order to choose the best-performing
BFT protocols in real-time. Second, BFTBrain coordinates
RL in a decentralized manner which is resilient to adversarial
data pollution, where nodes share local metering values and
reach the same learning output by consensus. As a result, in
addition to providing significant operational benefits, BFT-
Brain improves throughput over fixed protocols by 18% to
119% under dynamic conditions and outperforms state-of-the-
art learning based approaches by 44% to 154%.

1 Introduction
Byzantine fault-tolerant (BFT) consensus protocols are the
core engines powering the state machine replication (SMR)
paradigm, ensuring that non-faulty replicas execute client re-
quests in the same order, despite the existence of f Byzantine
replicas. The ability to tolerate up to f arbitrary failures makes
BFT protocols a key component in various distributed sys-
tems, including permissioned blockchains [6, 48], distributed
file systems [19, 22], locking services [23], firewalls [33, 34],
key-value stores [27, 35], and SCADA systems [9, 45].

While various BFT protocols have been proposed (e.g.,
PBFT [18, 19], Zyzzyva [46], CheapBFT [43], Prime [4],
SBFT [40] and HotStuff-2 [52]), there is no one-size-fits-all
solution. The performance ranking of BFT protocols varies
significantly depending on client workloads, network con-
figurations, and application needs. For example, protocols

that reduce message complexity by increasing communica-
tion phases exhibit better throughput but worse latency. In
addition, adversarial behaviors in the system also affect the
best-performing protocol choice. The lack of a clear “winner”
among BFT protocols makes it difficult for application devel-
opers to choose one and may invalidate their choice if work-
loads or attacks change. This is exacerbated in blockchain
systems where application workloads and potential attacks
are diverse and dynamic [37].

To address this challenge, two prior systems, Abstract
[8, 38] and ADAPT [10] have been proposed. Both systems
combine multiple protocols under a single framework and
switch between protocols adaptively in real-time. Specifically,
Abstract creates an adaptive framework whereby there is a
predefined switching order of BFT protocols. If one protocol
does not make sufficient progress, it is aborted and the next
protocol in the predefined order is selected. Such an approach
lacks flexibility and is unlikely to work in all scenarios.

ADAPT enhances protocol selection using supervised learn-
ing, but it faces operational limitations. First, it relies on a sin-
gle replica to collect data, train the machine learning model,
and then distribute the decision to all other replicas. In a
Byzantine environment, such centralized control is not real-
istic and runs counter to the entire BFT approach. Second,
its requirement for prolonged upfront data collection and su-
pervised learning hinders its ability to adapt to unforeseen
conditions and workloads. Lastly, as our experiments will
demonstrate, ADAPT’s incomplete feature space design ren-
ders it ineffective under diverse fault scenarios.

To embrace the idea of a multi-protocol BFT engine while
considerably enhancing its practicality, we propose BFTBrain,
a reinforcement learning (RL) based BFT system. At a high
level, given a performance metric to optimize, BFTBrain
smartly switches between a set of BFT protocols at run-time
under dynamic workloads. BFTBrain is practical in two as-
pects — it not only maintains adaptivity under various ad-
versarial behaviors, but also provides significant operational
benefits when deployed on different hardware and system con-
figurations: instead of manually choosing from multiple alter-

1

ar
X

iv
:2

40
8.

06
43

2v
1

 [
cs

.D
C

]
 1

2
A

ug
 2

02
4

native systems for deployment, or running a prolonged data
collection process prior to the deployment, BFTBrain only
requires running one system that automatically re-configures
itself to implement a top-performing protocol in real-time.

To leverage RL, BFTBrain measures in real-time perfor-
mance metrics obtained locally by replicas. Beyond stan-
dard metrics like commit throughput, BFTBrain employs fine-
grained metrics that offer deeper performance insights, such
as the ratio of requests that are committed in the fast path of
dual-path protocols, the number of received messages per slot,
and the interval between consecutive leader proposals. These
new metrics are measured in a distributed manner and serve as
features for BFTBrain’s RL engine. By modeling the selection
of a BFT protocol as a contextual multi-armed bandit prob-
lem, the RL engine strategically tests different protocols at
run-time to learn which ones are well-suited to the current sys-
tem conditions. BFTBrain coordinates RL in a decentralized
manner, where nodes share local features/rewards by consen-
sus and reach the same learning output, achieving resilience
to adversarial data pollution. Our extensive evaluation shows
that BFTBrain significantly outperforms fixed protocols and
existing adaptive systems in dynamic workloads and faults.

Specifically, this paper makes the following contributions.
BFT based on reinforcement learning. To our best knowl-
edge, BFTBrain is the first BFT system that utilizes reinforce-
ment learning to achieve run-time adaptability. It does not rely
on a lengthy data collection process prior to every deployment
and effectively adapts to unforeseen system conditions.
Adaptivity to fault scenarios. BFTBrain is the first BFT con-
sensus system that not only automatically adapts to dynamic
user workloads under a broad set of hardware and system
configurations, but also adapts to various fault scenarios.
Dissecting BFT performance. Through a suite of workload
and fault parameters, we conducted a large-scale study exam-
ining the relationship between protocol algorithmic design
and performance, encompassing a wide range of well-known
BFT protocols, including PBFT, Zyzzyva, CheapBFT, Prime,
SBFT, and HotStuff-2. Our experiments highlight the vast
state space, rendering existing solutions impractical.
Prototype and experimental evaluation. We developed a
prototype of BFTBrain and integrated it with the six BFT
protocols listed above. Our CloudLab evaluation demonstrates
that BFTBrain improves throughput by 18%-119% over fixed
protocols under dynamic conditions and outperforms the state-
of-the-art learning-based approach by 44%-154% depending
on how many data are polluted by adversaries.

2 Landscape of BFT Performance
To motivate BFTBrain, we first conduct an in-depth perfor-
mance study to examine how various BFT protocols perform
under different conditions. The key takeaway is that no sin-
gle BFT protocol is always “better” or “worse” than others,
but rather that different protocols perform better/worse than
others under different circumstances.

Table 1: Our observed best-performing BFT protocols un-
der different conditions. The advantage over the second-best
protocol is shown in the last column.

f # of absentees request size proposal slowness best protocol

1 0 4KB 0ms Zyzzyva (15.6%)
4 0 4KB 0ms Zyzzyva (34.3%)
4 0 100KB 0ms CheapBFT (8.5%)
4 4 4KB 0ms CheapBFT (13.1%)
4 0 0KB 20ms HotStuff-2 (45.4%)
4 0 1KB 20ms HotStuff-2 (44.8%)
4 0 0KB 100ms Prime (16.9%)
1 0 0KB 20ms Prime (71.5%)

2.1 Comparing Representative BFT Protocols
We picked six representative BFT protocols as our explo-
ration targets: PBFT [18], Zyzzyva [46], CheapBFT [43],
Prime [4], SBFT [40], and HotStuff-2 [52]. All six protocols
are leader-based, working in the partial synchrony settings
with networks of n = 3 f + 1 nodes1. Detailed background
on these protocols is provided in Appendix A. These proto-
cols and the benchmarking tools were implemented under a
common software framework Bedrock [5]; hence, our eval-
uation below focuses on the impact of algorithmic logic of
these protocols on performance, rather than the effect of the
implementation details of a specific system.

Our experiments were conducted on CloudLab [28] where
each replica is an xl170 bare metal server. We ran these six
protocols under diverse workloads and fault scenarios, and
compared their average throughput during 120 second runs
that were stably reproduced 10 times. For a fair comparison,
the common internal parameters (e.g., batch size and view-
change timer) of all six protocols were configured with the
same values. For simplicity and facilitating protocol switch-
ing, as described in later sections, we added f extra replicas
to the original CheapBFT acting as active replicas (see [43]).
This approach affects the hardware resource consumption and
scalability of the original CheapBFT, but does not change its
performance under our setups. We also emulated the overhead
of the trusted subsystem CASH by injecting 60 µs delay for
creating and verifying message certificates.

Table 1 summarizes our evaluation results. Importantly, it
demonstrates that no single protocol dominates in all con-
ditions. The first four columns indicate the workloads and
fault scenarios: system size, number of non-responsive nodes,
client request size, and slowness of leader proposals; a more
detailed description is provided in Section 4.2. The last col-
umn shows the best-performing protocol under each condition
as well as its relative percentage advantage in throughput over
the second-best protocol; the throughput of all six protocols
under each condition is provided in Appendix D.1.

It is worth underscoring that a “slowness-attack”, capturing
the interval between two consecutive leader proposals, ap-

1CheapBFT requires only 2 f +1 with the help of trusted hardware, but
was evaluated with 3 f +1 for simplicity. Correctness is still guaranteed.

2

pears in many studies [4,8,23]. It captures a Byzantine attack
where a malicious leader deliberately postpones its proposal
before the view-change timer expires. In addition, it could
also happen naturally in a heterogeneous deployment, where
a leader has weaker compute or network resources compared
to other replicas. Below, we navigate through the table and
explain the insights behind the results.
Row 1-3. The first three rows are in an ideal world where
every replica is benign and responsive, with no obvious slow-
ness in leader proposals, while varying the network and re-
quest sizes. When n = 4 (f = 1) and the request size is 4KB,
Zyzzyva outperforms the next best protocol CheapBFT by
15.6%. When increasing the network size to n = 13 (f = 4),
Zyzzyva outperforms CheapBFT by 34.3%. However, when
the request size increases to 100KB, a flip of ranking occurs:
CheapBFT becomes the best-performing protocol and outper-
forms the second best protocol HotStuff-2 by 8.5%, which
then slightly outperforms Zyzzyva. The comparison of rows
2 and 3 suggests that different protocols have different “sweet
spots” depending on the request size and quorum size. When
requests are small, optimistically waiting for 3 f +1 votes is
reasonable, but when requests become larger, waiting for the
slowest f nodes to vote on a leader proposal takes a long time,
especially when f is large. In the latter scenario, protocols
that only need 2 f +1 replicas to vote on the leader proposal
perform better, even at the cost of an extra phase of exchang-
ing small hashes and extra computation. Note that due to the
separation of transaction dissemination from consensus logic,
only the leader proposals contain the actual requests.

Two of the protocols we studied require a 3 f +1 quorum
in their fast paths: Zyzzyva and SBFT. Across rows 1 to 3 in
Table 1, Zyzzyva’s performance leads or almost equals SBFT
since it has fewer phases of communication. However, we
found that with weaker clients, SBFT outperforms Zyzzyva in
some cases. More specifically, we reran row 1 on a different
hardware setup, where the client machine (which hosts mul-
tiple client threads) is configured with fewer CPU cores and
higher network latency: this is done by limiting the available
CPU cores on a 10-core machine to 6 using taskset and
injecting an extra 20ms RTT. In this new setup, SBFT outper-
forms Zyzzyva by 8.5%. These two protocols demonstrate a
design trade-off between the number of phases and the choice
of commit collector. Since SBFT moves the collector role
from clients to certain replicas, it is beneficial when clients
have weak network connectivity and compute power.
Row 4. Row 4 demonstrates the effect of non-responsive repli-
cas, referred to as absentees in the table. When certain replicas
are non-responsive, the performance of dual-path protocols is
adversely impacted, since a slow path is activated only after
a timer expiration when failing to gather 3 f +1 votes on the
fast path. Conversely, single-path protocols are less impacted
and even have better performance due to fewer message vali-
dations and less bookkeeping. In this setting, CheapBFT is
the best-performing protocol in our evaluation, which outper-

forms the next best protocol HotStuff-2 by 13.1% since it
has fewer phases of communication. Due to their slow paths,
Zyzzyva and SBFT become the bottom-performing protocols.
It is worth mentioning that in our evaluation, HotStuff-2 is
equipped with a reputation-based leader rotation mechanism,
Carousel [24], which tracks active replica participation via
their signed votes during the committed chain prefix in order
to select the next leaders. For a HotStuff-2 implementation
without leader reputation mechanisms, CheapBFT will out-
perform it by an even larger margin, since it suffers from a
non-responsive leader periodically.
Row 5-8. Row 5-8 evaluate different degrees of proposal slow-
ness, representing a Byzantine world where malicious leaders
might deliberately slow down the system. When the slowness
is as low as 20ms and f is large, HotStuff-2 outperforms all
other protocols by up to 45.4%. This is due to HotStuff-2’s
routine leader rotation, which is made possible with low cost
by its linear responsive view-change and alleviates the impact
of slow nodes elected as leaders. Although Prime also re-
places slow leaders proactively, it has more phases and higher
communication complexity than HotStuff-2 (i.e., 6 phases
and quadratic complexity compared to 2 phases and linear
complexity), resulting in worse performance. However, when
the slowness further increases to 100ms, or when the net-
work size reduces from 13 to 4 (f = 4 to f = 1), the ranking
flips: Prime outperforms HotStuff-2 by 16.9%-71.5%. This
happens since Prime replaces any deliberately slow leader
with a stable benign leader. In Prime, each node measures
the actual turnaround time to the leader, which is indepen-
dent of the system load, and compares it with the acceptable
turnaround time, which is a function of the RTT between
correct servers. In HotStuff-2, when the network is small or
slowness is high, slow nodes are being rotated in as leaders
routinely, causing considerable slowness. This outweighs the
benefits of HotStuff-2’s simpler and linear communication
pattern, resulting in sub-optimal performance.

These experiments demonstrate a complex trade-off be-
tween design principles of different BFT protocols. Thus,
when conditions change dynamically, no single protocol out-
performs others in all scenarios.

2.2 The Case for Reinforcement Learning
Since no single BFT protocol is dominant in all scenarios,
one could imagine building heuristics or supervised learning
models that map conditions to the best-performing protocol,
and switching protocols at run-time according to the current
perceived conditions. However, such approaches suffer from
several drawbacks.
Condition space size. The condition space is too large to
search. Table 1 only presents a sample of the space. The
complete condition space we monitor consists of 6 dimensions
(State 1 and 2 in Section 4.2), where each dimension is either
a continuous or discrete variable. Further, each point in the
condition space has multiple protocols to experiment with.

3

Even with coarse-grained sampling and an automated toolkit,
it took us more than a week to experimentally explore just a
small subset of the condition space. Unfortunately, building
good heuristics and supervised models requires complete data,
which are hard to obtain.
Hardware and time dependence. The mapping from condi-
tions to the best-performing protocol depends on the underly-
ing hardware and system configuration: when changing from
xl170 to m510 instances on CloudLab, or changing from a
13-node network to a 4-node network, the mapping changes.
Additionally, we observe that even with the same hardware
instance type but across different launches on shared facilities
like CloudLab, the sweet spots (in terms of request size) of
Zyzzyva and CheapBFT change due to subtle differences in
physical machines and network resource availability. Worse
yet, network conditions can change over time, rendering any
pre-computed mapping on a specific network less useful.
Growing protocol space. When new BFT protocols emerge
(e.g., HotStuff-2) or changes are introduced to existing imple-
mentations (e.g., DiemBFT-v1 to v4 [1]), any precomputed
mapping would need to be recomputed. In other words, one
would need to re-collect data and re-craft the heuristics, or re-
collect data and retrain the supervised model virtually every
time a new BFT consensus protocol is proposed.

Reinforcement learning addresses this daunting and com-
plex task, and has shown superior performance in other
learned systems [20, 53, 54, 61]. Unlike supervised learning,
which assumes training data is complete and requires a sepa-
rate lengthy data collection process prior to deployment, one
can simply plug and play an RL-based system — it learns
from its mistakes and optimizes long-term rewards through
trials in an online fashion. With reinforcement learning, BFT-
Brain can optimize itself to whatever client workloads, faults,
hardware, system configurations and BFT protocols present,
providing adaptivity and significant operational benefits.

3 BFTBrain Overview
We provide an overview of BFTBrain, first outlining its sys-
tem model followed by its overall reinforcement learning
based design.

3.1 System Model
In BFTBrain, we assume a system consists of a fixed set of
n = 3 f + 1 nodes and a finite population of clients, where
up to f nodes and any number of clients might experience
Byzantine faults. Each node serves two roles simultaneously,
validator and learning agent. A validator is responsible for
totally ordering the blocks, while a learning agent coordinates
online data collection, trains machine learning models, and
periodically instructs the companion validator at run-time to
replace the current BFT protocol.

When a node is faulty, it can behave arbitrarily in any of its
roles. The faulty validators may exhibit standard malicious
behavior such as double voting and message suppression or

equivocation. We assume a strong adversary that can coordi-
nate the faulty validators to compromise the replicated service.
However, we do assume the adversary cannot break the crypto-
graphic techniques. Given our use of machine learning, faulty
learning agents could exhibit additional malicious behaviors
related to learning, such as being non-responsive (e.g., refuse
to exchange its locally measured data with other learning
agents), as well as presenting arbitrarily manipulated local
data points (i.e., local features and rewards) in order to disrupt
the machine learning models on other agents.

Network communication is point-to-point and authenti-
cated. BFTBrain adopts the partial synchrony model [29],
where there is a known bound ∆ and an unknown Global
Stabilization Time (GST), such that after GST, all transmis-
sions between two correct nodes arrive within time ∆. For
two different roles on the same node, we assume their com-
munication in-between is always synchronous.

3.2 Design Overview
At a high level, BFTBrain contains three key components:
(1) a reinforcement learning algorithm (i.e., the core of the
learning agent) that guides the choice of BFT protocols ac-
cording to the perceived underlying dynamic environment, (2)
a coordination protocol that collects data distributedly at run-
time, and (3) a switching mechanism that allows BFTBrain to
seamlessly transition from one BFT protocol to another while
ensuring safety and liveness.

BFTBrain operates in epochs, where each epoch is marked
by the completion of k blocks. Here, k is a predefined constant
hyper-parameter. Within one epoch, the protocol remains un-
changed. When the learning agent finds a protocol candidate,
it instructs the validator to use that protocol for the next epoch.
We next introduce BFTBrain’s key components and workflow.

Learning agent. BFTBrain’s learning agent models the prob-
lem of selecting a BFT protocol as a contextual multi-armed
bandit (CMAB) problem [66]: periodically, BFTBrain exam-
ines the most recent state of the workload and faults in the
system (context), and then selects one of many BFT proto-
cols (arms) in our protocol pool. After making the selection,
it observes the performance of the newly selected protocol
(reward). To be successful, BFTBrain must balance the explo-
ration of new, untested protocols with exploiting past expe-
rience to maximize performance. That is, without a careful
balance of exploration and exploitation, BFTBrain risks fail-
ing to discover an optimal protocol (too much exploitation),
or performing no better than random (too much exploration).
We select this CMAB formulation (as opposed to full rein-
forcement learning) because CMABs are exceptionally well-
studied, enable faster convergence, and many asymptotically-
optimal algorithms exist to solve them [2, 21]. Details about
the learning algorithms are provided in Section 4.

Since BFTBrain operates in a Byzantine environment, a
centralized learning agent cannot be trusted. In BFTBrain,
each validator process has a companion learning agent run-

4

Figure 1: Overview of BFTBrain. For readability, we only
present the internals of one node i.

ning on the same node, and accepts instructions only from its
companion learning agent. The learning agents themselves
also form a state machine replication. Specifically, they start
with the same initial state, i.e., the same random seed of ma-
chine learning models. For the same epoch t, as we will show
later, different learning agents agree on the same sequence
of operations, i.e., training data points where each data point
consists of context and reward. With deterministic training,
benign learning agents host the same parameters for their ma-
chine learning models. As a result, if different learning agents
perceive the same context for epoch t +1, they will render the
same decision (i.e., choice of protocol) for epoch t +1.

Distributed online data collection. In a Byzantine environ-
ment, no centralized entity could be trusted to collect training
data. Therefore, the learning agents in BFTBrain also partici-
pate in a protocol that coordinates distributed data collection
in an online fashion. At a high level, for every epoch, each
learning agent monitors its local context and reward at run-
time, then exchanges them with other agents via a separate
instance of BFT consensus independent of the consensus that
validators are running. For each epoch, agents form agreement
over an aggregation of contexts and rewards that include input
from at least a quorum of two-thirds of agents. The consensus
algorithm used for forming this agreement is left open for the
system designer (note that it is invoked only once per epoch,
hence does not need to have high throughput). Once an agreed
quorum of local contexts and rewards is obtained, each learn-
ing agent can apply the same robustness filter to the quorum
in order to get a global context and reward, constituting a
training data point. Details about this learning-coordination
protocol are provided in Section 5.

Switching BFT protocols. After a BFT protocol is selected
by the learning agent, the switching mechanism allows each
validator to make use of this protocol for the next epoch. Our
switching mechanism is an improvement over Abstract [8],
which aborts a BFT instance if a certain progress condition
is not met. An epoch in BFTBrain is equivalent to a Backup
instance in Abstract. Due to space limits, details on how we
switch BFT protocols are provided in Appendix B.

BFTBrain workflow overview. Figure 1 presents an
overview of BFTBrain, where each node in the system fol-

lows the same workflow as depicted. In the middle of epoch
t, when the number of executed blocks reaches a certain wa-
termark, the validator on node i notifies its local learning
agent. The learning agent featurizes its current local state
(i.e., context) observed in epoch t, and uses it to approxi-
mate the next local state statet+1

i for epoch t +1. Each agent
exchanges statet+1

i and its locally measured reward of pre-
vious epoch rewardt−1

i with other agents via the learning-
coordination protocol. Therefore, each agent obtains the same
global state statet+1 and reward rewardt−1. Subsequently,
each agent adds the (statet−1, protocolt−1,rewardt−1) triplet
to its experience buffer, and retrains its predictive model Mθ

based on its experience buffer as well as the chosen algo-
rithm to solve CMAB. Once retrained, the predictive model
Mθ inferences the performance of each protocol candidate
under statet+1, and selects protocolt+1 that is predicted to
have the best performance. The learning agent then informs
the validator to switch to protocolt+1 for epoch t +1, the re-
ward of which is then measured locally upon reaching the end
of epoch t +1. The validator only starts epoch t +1 once it
receives a decision for that epoch from the companion agent.

The learning agent is designed in a way such that the BFT
system is not delayed due to learning. First, within one epoch,
when the model undergoes retraining and inference, the par-
allel validator process still commits blocks simultaneously.
Second, with a lightweight model design and limiting the size
of the experience buffer, model training and inference can
be viewed as a synchronous process. In other words, with a
reasonable epoch length, the learning agent can complete pro-
tocol selection before the validator finishes its current epoch,
without impeding the start of the next epoch.

4 Learning Algorithms
This section delves into BFTBrain’s learning algorithms. We
first formalize the learning problem and explain the use of
Thompson sampling. The state and action space design is
then outlined, followed by the predictive model description.

4.1 Problem Formulation
BFTBrain formulates the learning problem as a contextual
multi-armed bandit (CMAB) problem, where an agent peri-
odically makes decisions in a sequence of epochs. In epoch t,
the agent selects an action at in its protocol pool based on a
provided state st , and then receives a reward rt . The agent’s
goal is to select actions in a way that minimizes regret, i.e., the
difference between the reward sum associated with an opti-
mal selection strategy and the reward sum associated with the
chosen actions. CMABs assume that epochs are independent
from each other, and that the optimal action depends only on
the state st . BFTBrain fits this assumption, since the current
choice of protocol does not affect the pattern of workloads and
faults in future epochs. Using this CMAB formulation, BFT-
Brain allows users to specify any performance metric (e.g.,
throughput or latency) as the reward function to optimize.

5

Thompson sampling. Amongst different CMAB algorithms,
we select Thompson sampling [2, 21] for its simplicity: at
the start of each epoch, the learning agent trains a model
based on current experience, and then selects the best action
as predicted by the model. In Thompson sampling, instead
of selecting the model parameters that are most likely given
the training data as used by supervised learning, it samples
model parameters proportionally to their likelihood given
the training data. More formally, we can define maximum
likelihood estimation as finding the model parameters θ that
maximize likelihood given experience E: argmaxθ P(θ | E)
(assuming a uniform prior). Instead of maximizing likelihood,
Thompson sampling simply samples from the distribution
P(θ | E). As a result, if we have a lot of data suggesting that
our model weights should be in a certain part of the parameter
space, our sampled parameters are likely to be in that part of
the space. Conversely, if we have only a small amount of data
suggesting that our model weights should be in a certain part
of the parameter space, we may or may not sample parameters
in that part of the space during any given epoch.

4.2 State and Action Space
We next list factors that affect the performance of BFT pro-
tocols, broadly grouped into workloads, faults, and hard-
ware/system configurations categories, jointly constituting
the state space. Within each epoch, each learning agent lever-
ages a window of the last w executed requests to featurize
such factors, where w is a constant hyper-parameter.
State 1: Workloads (W). The first category consists of factors
that are influenced by application and client dynamics.
W1: Request size. The request size is dependent on the ap-
plication workload, where some requests contain little data
while others are more involved and require updating files with
large chunks of data. Although all our candidate protocols
separate request dissemination from sequencing (i.e., only the
leader proposals contain the actual requests while the remain-
ing messages contain the hash of requests), as described in
Section 2, request size is still an important factor impacting
the performance of different protocols in different ways. We
use the average request size to represent this feature.
W2: Reply size. Depending on the application, request and re-
ply size can be asymmetric. Reply size also impacts different
protocols in different ways, but with a distinct boundary from
that of request size. For instance, in our experiments, when
all other factors remain the same, CheapBFT performs best
for either 0KB/4KB (request size/reply size) or 40KB/0KB,
while Zyzzyva is best with 4KB/0KB. Furthermore, different
protocols have different sensitivity to an increase in reply size.
For instance, SBFT reduces the per-client linear reply cost to
just one message by adding an execution aggregation phase.
We use the average reply size to represent this feature.
W3: Load on system. The load on the BFT system is depen-
dent on the number of clients and the rate at which clients
send new requests. Specifically, each honest client allows a

quota of outstanding unacknowledged requests before issuing
new ones, controlling the rate at which requests are generated
relative to the system’s capacity to process them.

In our experiments, we observed that lowering the load af-
fects different protocols in the same direction, but to different
extents: for example, there is a sharper drop in the throughput
of Zyzzyva and SBFT compared with other protocols. The
reason is that lower load increases batching delay, which has
a larger impact in terms of both latency and throughput on
protocols with fewer phases (i.e., Zyzzyva and SBFT in our
protocol pool). BFTBrain derives the per-client sending rate
according to the request timestamps, and uses the aggregated
client sending rate to represent this feature.
W4: Execution overhead. Execution overhead captures the
computational cost of request execution, which impacts the
system in two ways. First, it directly affects the execution la-
tency in state machine replication. Second, it indirectly affects
other components of the BFT protocol that are also compute-
intensive. For instance, requests with high execution overhead
compete for CPU resources that are otherwise used to sign
and verify messages, especially when machines have limited
compute capacity or a small number of cores. Higher compute
load results in excessive context switching, and potentially
pushes the system towards being compute-bound instead of
network-bound. We use the CPU cycles consumed by the
executor thread to represent this feature.
State 2: Faults (F). The next category of factors is tied to
faulty behaviors. BFT protocols make different assumptions
about “steady state” and “common faults”, and hence, each
protocol is often optimized for specific fault scenarios. The
features below enable BFTBrain to tell what type of fault
scenarios the system is experiencing and choose the most
promising protocol accordingly.

Note that BFTBrain does not aim to defend against tran-
sient or broad-spectrum faults. The reason is, transient faults
are already handled timely at the protocol level and require no
protocol switching. An example would be a crashed leader or
a malicious leader which equivocates, such that no progress
is made and a view-change will be triggered to replace the
leader. For broad-spectrum faults, effective and orthogonal
solutions already exist. Examples of broad-spectrum faults
include network flooding which can be resolved via resource
isolation [8], and malformed client requests which can be han-
dled by enforcing client signatures (instead of MACs) [23].
F1: Absence from participation. In BFT consensus, valida-
tors can be absent from participation for various reasons: a
(benignly) crashed validator is absent from all protocol phases
after crashing, while an alive malicious validator could be ab-
sent from any arbitrary phases.

Measuring absence is tricky in a Byzantine environment,
especially considering that a collusion of f malicious partici-
pants could taint validator participation simply by excluding
some alive benign validators (up to f) and progressing with-
out them. For example, a malicious leader could deliberately

6

avoid sending leader proposals to them, while the f malicious
validators work together with the remaining f + 1 benign
ones to make sure all requests are committed successfully on
these 2 f +1 validators. We refer to such excluded, non-faulty
validators as being placed in-dark. In-dark validators could
further be excluded in other protocol phases, in addition to
leader proposals, by f malicious validators. Since no state
transition is ever triggered on in-dark validators, they remain
in the initial state and are thus absent from participation. Al-
though they will timeout and complain, since fewer than f +1
validators complain, view-change is not triggered to replace
the malicious leader and they are in-dark continuously.

All protocols tolerate the absence of up to f validators by
design, but the performance of different protocols is impacted
differently. As illustrated in Section 2, dual-path protocols
(i.e., Zyzzyva, SBFT) are adversely impacted since the more
expensive slow paths are initiated, while single-path protocols
(i.e., PBFT, CheapBFT, Prime, HotStuff-2) could be positively
impacted due to less resource consumption.

The learning agents in BFTBrain featurize absence by uti-
lizing information that is already collected locally during
protocol execution. First, fast path ratio captures the percent-
age of slots committed in the fast path over the total number of
committed slots. For single-path protocols, all slots are com-
mitted in the slow path. Second, for each slot, the agent sums
the number of (valid) distinct messages from each sender, de-
riving the number of received messages per slot. Note that this
feature does not incur more messages to be sent or received;
it simply counts messages as they arrive and pass preliminary
processing (de-serializing and sender verification) before they
can be excluded from protocol steps like voting.
F2: Slowness of proposal. In leader-based BFT protocols, ev-
ery slot is initiated by a leader proposal, which significantly
affects the system’s end-to-end performance. In the case of
a faulty leader, validators use a timer to trigger view-change,
which will replace the leader, hence guaranteeing liveness.
However, a malicious leader can deliberately slow down its
proposals without being replaced, resulting in poor latency
and throughput. Slowness may not necessarily be a deliberate
act by a malicious leader, it could result simply from a weak
or overloaded leader, albeit to a lighter extent.

Section 2 illustrates the effect of this factor. Protocols
with routine or proactive leader replacement (i.e., HotStuff-2,
Prime) maintain good performance under such slowness, but
perform sub-optimally in other normal cases. To featurize
this factor, each node in BFTBrain timestamps every leader
proposal received, and measures the average time interval
between receiving two consecutive proposals.
State 3: Hardware and system configurations. The last
category comprises hardware and system configurations.
Hardware-level factors include standard data-center infras-
tructure network settings that affect network latency and band-
width, and also machine-level configurations such as CPU
frequency and the number of cores. System-level configura-

tions include the number of nodes in the consensus system
and the geo-distribution of the nodes. Compared to State 1
and 2, both hardware and system configurations are fairly
static and do not change rapidly at the timescale of a consen-
sus deployment. Thus, BFTBrain does not explicitly featurize
these factors because (1) the impact of these factors is implic-
itly encoded in the predictive model trained online, and (2)
CMABs will converge even without any explicit features [12],
the purpose of which is to accelerate convergence so that the
optimal action is reached before the world changes.
Actions. BFTBrain’s action space consists of the same set of
leader-based protocols that are studied in Section 2, namely,
PBFT, Zyzzyva, CheapBFT, Prime, SBFT, and HotStuff-2. As
we will show later, since BFTBrain builds a separate model
for each candidate protocol, features of the protocol design
are encoded in the model itself. Thus, BFTBrain does not
require protocol-specific feature engineering for encoding the
action space, making it easy to incorporate new protocols into
the BFTBrain framework. Although BFTBrain focuses on
choosing the best-performing protocol, configuring protocol
internal parameters (e.g., values of different timers and the
interval for rotating leaders) intelligently at run-time can be
an interesting future extension.

4.3 Predictive Model
Each learning agent hosts some predictive models, which
follow the value based RL approach: given the featurized
current state, predict the performance (i.e., reward) of each
action (i.e., protocol). The simplest implementation would
be to build a single predictive model for all protocols, but
this has a major drawback. While features W1-W4 in the
workloads category are completely independent from the pre-
vious action, the featurized absence-from-participation F1
and slowness-of-proposal F2 have a “one-step dependency”:
the current observed statet+1

F1,F2 is dependent on the previous
protocolt . When the workload and fault scenario shift, such
one-step dependency might prevent convergence to the new
optimal protocol. For instance, if BFTBrain has converged
to protocols whose leader has lower parallelism (e.g., Prime
due to message aggregation in global ordering), the measured
slowness of proposals will be higher than other protocols,
regardless of whether a fault is actually happening or not. In
other words, the interpretation of the slowness-of-proposal
feature changes based on the previous action. If the model
learns that a high slowness-of-proposal is bad for Zyzzyva,
then once Prime is chosen, slowness-of-proposal will always
seem high, and Zyzzyva may not ever be selected again.

Luckily, unlike in the general case of Markov decision pro-
cesses, the dependency observed here is limited to a single
time step. That is, the prediction of the next best action is
independent given the immediately prior action. To solve
this issue rooted in one-step dependency, the learning agent
trains a separate model for each possible (previous protocol,
protocol) pair, and divides the experience buffer into several

7

smaller buckets according to the (previous protocol, protocol)
pair as well. In terms of bandit theory, assuming there are K
protocols in our action space, BFTBrain’s approach is equiva-
lent to playing K bandit games where each game has K arms.
In each game, the current observed statet+1

F1,F2 is independent
from the previous action protocolt .

It is worth mentioning that this transformation does not
completely remove the one-step dependency. The action made
at epoch t will determine which of the K bandit games is being
played at epoch t +1. A multi-armed bandit algorithm will
not be able to take advantage of the fact that some of the
K bandits may have significantly better reward distributions
than others. Thus, the convergence bound on regret of bandit
algorithms will not apply to our scenario. However, since
each of the K bandits will be played an unbounded number
of times eventually (assuming the probability of any action
never fully reaches 0), regret is still bounded in the limit.

Specifically, for each possible (protocolt , protocolt+1)
pair, BFTBrain uses a lightweight random forest [15] as the
predictive model, which is trained exclusively on the cor-
responding experience bucket. The model takes the featur-
ized state as input, and outputs the predicted performance
for the corresponding candidate action protocolt+1. Thus, at
inference time, given a known previous protocol and the cur-
rent state, the learning agent enumerates K models to get the
predicted performance for each candidate protocol, and then
chooses the candidate with the best predicted performance to
be carried out. Once there is a tie on the best predicted per-
formance, we break the tie randomly to avoid local maxima.
When an experience bucket is empty, BFTBrain prioritizes ex-
ploring this bucket by choosing the corresponding candidate
protocol to be carried out.

Integration with Thompson sampling. Integrating a pre-
dictive model with Thompson sampling requires the ability
to sample model parameters from P(θ | E) — the distribu-
tion of model parameters given the current experience. The
simplest technique (which has been shown to work well in
practice [55]) is to train the model as usual, but only on a boot-
strap [14] of the training data. In other words, the predictive
model is trained using |E| random samples drawn with re-
placement from experience E, inducing the desired sampling
properties. BFTBrain uses this bootstrapping technique on
each experience bucket and predictive model for its simplicity.

Overhead of learning. First, BFTBrain’s training overhead
is not larger than the strawman of building a single predictive
model, since in every epoch, only one model which corre-
sponds to the updated bucket needs to be retrained. For such
a bucket, the time complexity for training a single random
forest is O(n logn), where n is the number of data points.
Thus, given the same total population of data, it even incurs
less training overhead than the strawman solution, since the
bucket contains fewer data points than the single unified ex-
perience buffer. Second, BFTBrain’s inference overhead is

O(K), where K is the number of candidate protocols. Lastly,
BFTBrain has the same memory overhead as the strawman
for storing training data. However, it incurs O(K2) memory
overhead for storing the models. Since random forest is a very
lightweight model as compared to deep neural networks, such
model storage overhead is negligible.

5 Learning Coordination
The goal of the learning-coordination mechanism is to form
an agreement at each epoch on a report quorum that includes
local metrics collected from 2 f +1 nodes.

Specifically, learning coordination is performed in every
epoch t. After executing w requests (a hyper-parameter) in
epoch t, each node i gathers local performance indicators
pt−1

i measured during epoch t− 1, featurizes the next state
f t+1
i , and broadcasts both metrics inside a report message. To

ensure that at least f + 1 metrics in the report quorum are
honest measurements, it is important that the metrics reported
by honest nodes are measured by themselves. That is, if a
node j has been placed in-dark (defined in Section 4.2) or
temporarily slows down during epoch t, it may not have exe-
cuted w requests by itself. Rather, node j will have recovered
the consensus state through a state-transfer from other nodes.
In this case, j should avoid reporting the state features it has
copied from others, and likewise, avoid reporting performance
indicators collected from partial or no execution. Therefore,
node j will not report any metrics for epoch t. Note that in
addition to the f benign nodes being placed in-dark, in the
meantime, the f Byzantine nodes that contributed to commit-
ting requests can refuse to report their metrics. Hence, there
may not be enough 2 f +1 nodes reporting for the epoch.

In order for nodes to agree on a quorum of (valid) reports
to be used as input for the learning engine, any “blackbox”
validated Byzantine consensus primitive (VBC) seeded with
a leader collecting reports from 2 f +1 nodes can be utilized.
Specifically, for each epoch t, the leader of VBC initiates
VBC-PROPOSE((t,reportQCt), P) once it receives valid report
messages (pt−1

i , f t+1
i) where both fields are non-null from

2 f +1 nodes, or when a timer expires. Here, P is an external
validity predicate that checks if reportQCt includes at least
f +1 distinct reports.

Each node participating in VBC gates voting for a leader
proposal it receives by applying the validity predicate P to it.
Once a quorum of reports reportQCt is decided by VBC, if it
includes sufficient 2 f +1 reports, each node takes the median
value of each field in order to obtain a robust global per-
formance measurement pt−1 and state feature f t+1, thereby
triggering the retraining and inference process. Taking the
median value from an aggregated set of metrics guarantees
that despite f arbitrarily manipulated values from Byzantine
nodes, the global value taken is between two honest mea-
surement values. Otherwise, if reportQCt does not include
sufficient reports, each node retains the decision from the
previous epoch instead of deriving any new learning deci-

8

sion, and complains about the leader in VBC as well as the
leader in the current protocol used by the node for committing
client requests. Note that since VBC is a separate consensus
instance, the leader of VBC can be different from the leader
of the current protocol in BFTBrain. Either of them acting
maliciously can result in insufficient reports being collected.

For completeness, Appendix C.1 presents in Algorithm 1
a detailed learning coordination protocol where VBC is im-
plemented using PBFT. Due to space limitations, the safety,
liveness, and robustness guarantees of BFTBrain’s learning
agents are discussed and proved in Appendix C.2.

6 Implementation
We implemented BFTBrain in Java using Bedrock [5], a uni-
fied platform for BFT protocol implementation and experi-
mentation. The Bedrock platform consists of four main com-
ponents: the core unit, the state machine manager, the plugin
manager, and the coordination unit. The core unit defines en-
tities (e.g., clients and validators), maintains the application
logic, enables users to specify different workloads and bench-
marks, and track the execution of requests via sequence num-
bers and views. The state machine manager parses Bedrock’s
domain-specific language (DSL) for rapidly prototyping BFT
protocols, and defines the states and transitions of the specific
BFT protocol for each entity. The plugin manager enables
implementing protocol-specific behaviors that cannot be cap-
tured by Bedrock’s DSL, while the coordination unit manages
the run-time execution of Bedrock.

All protocol candidates in BFTBrain’s action space utilize
Bedrock. On top of it, we implemented a workload and fault
generator, which allows users to specify time-varying dynam-
ics inside a YAML configuration file, enabling parameterized
random sampling and scheduling of predefined sequences of
events. To enable switching among BFT protocols, we imple-
mented a new state machine manager which loads all plugins
required by BFTBrain when the system boots, and uniquely
tags each protocol state and transition such that different pro-
tocols do not interfere. This approach has negligible overhead
since such loading and tagging only happens when the system
boots, and lookup for states and transitions at run-time takes
a (small) constant time. We implemented the learning agent
separately in Python using scikit-learn, which communi-
cates with the companion validator process in Bedrock via
gRPC. Our implementation is publicly available2.

7 Evaluation
Our evaluation aims to answer the following questions:
1. How fast can BFTBrain converge to the best-performing
protocol under static conditions without pre-training?
2. How does BFTBrain compare to fixed protocols and exist-
ing learning-based approaches in dynamic environments?
3. How does the hardware setup affect the performance of
fixed protocols? How does BFTBrain compare to existing

2https://github.com/JeffersonQin/BFTBrain

learning approaches under different hardware setups?
4. How robust is BFTBrain and how does it compare to ex-
isting learning approaches under adversarial data pollution?
5. What learning overhead does BFTBrain introduce?

In the rest of this section, we present the experimental setup
and then answer each of the above questions.

7.1 Experimental Setup
Testbed. Unless otherwise specified, our testbed consists of
several bare-metal xl170 machines on CloudLab, each with a
10-core Intel E5-2640v4 processor at 2.4 GHz, 64GB ECC
Memory, and two dual-port Mellanox ConnectX-4 25 GB
NIC. Each server is connected via a 10Gbps control link and
a 25Gbps experimental link to Mellanox 2410 switches in
groups of 40 servers. Our experiments are conducted using
the experimental link.
System configuration. Our experiments are carried over net-
works of two sizes: n = 4 and n = 13. In all experiments, we
run multiple client threads on a separate xl170 server, where
each client follows the standard closed-loop buffer design,
i.e., allows at most 100 outstanding unacknowledged requests
before issuing new ones. The number of clients is a parameter
in our workload space. We use batch sizes of 10 requests
throughout the experiments. Every experiment of BFTBrain
starts with PBFT as its initial protocol. We use throughput as
the reward function for BFTBrain to optimize.

7.2 Convergence under Static Conditions
Our first set of experiments evaluates how quickly can BFT-
Brain converge to the best-performing protocol under static
conditions. We picked three representative settings from Ta-
ble 1 where the size of the network is small: row 1, a variant
of row 4 where f = 1, and row 8. Under each setting, we
ran all six fixed protocols and BFTBrain for 10 minutes on a
LAN. We note that the other rows in Table 1 yielded similar
conclusions and are omitted for brevity.

Table 2 summarizes our results, listing for each static con-
dition the average throughput (tps) of each protocol in the last
20 epochs. The last column reports the convergence time of
BFTBrain, defined as the time BFTBrain spent to reach the
stable peak throughput. Although each setting has a different
best-performing protocol, BFTBrain always learns to select it
within 0.81-5.39 minutes3. As we will show soon, the conver-
gence is significantly accelerated the second time BFTBrain
encounters the same conditions.

Obviously, in this experiment, BFTBrain is not able to
surpass the best-performing protocol in any given setting. Ad-
ditionally, as shown in the table, it experiences a marginal
increase in switching overhead when compared to the leading
protocol in each specific setting. Nevertheless, owing to its
adaptability, BFTBrain does deliver the best average and best
worst-case performance across all settings in the table. In con-
trast, fixed protocols exhibit subpar average and worst-case

3Most RL systems quantify convergence time in minutes.

9

https://github.com/JeffersonQin/BFTBrain

Table 2: Throughput of protocols and the convergence time of BFTBrain under various static conditions. The highest throughput
in each row is highlighted in blue.

Condition Average Throughput (tps) Conv. Time (minutes)PBFT Zyzzyva CheapBFT Prime SBFT HotStuff-2 BFTBrain

Row 1 (LAN) 9133 13664 11822 4601 11067 6882 13100 0.81
Row 4 (LAN)* 10303 1025 12297 3749 2920 5156 11803 2.08
Row 8 (LAN) 989 988 989 4527 989 2640 4329 5.39
Row 1 (WAN) 5325 9503 12201 1639 8261 2882 11101 1.58

Average 6438 6295 9327 3629 5809 4390 10083 2.47
Worst 989 988 989 1639 989 2640 4329 5.39

Zyzzyva

Zyzzyva

Zyzzyva

Zyzzyva

CheapBFT

CheapBFT

CheapBFT

CheapBFT

Hotstuff-2

Hotstuff-2

Hotstuff-2

Hotstuff-2

Hotstuff-2
Prime

Figure 2: Adaptivity of BFTBrain under changing conditions.
The vertical dashed lines indicate when conditions change.
Labels indicate the dominant protocol that BFTBrain and
ADAPT choose under each condition.

Figure 3: BFTBrain’s throughput (a) during minutes 0-30, and
(b) during minutes 180-210. In both periods, it encounters the
system conditions captured in row 2 of Table 1.

throughput, underscoring our initial premise that no single
fixed protocol excels under all circumstances.

7.3 Adaptivity under Changing Conditions
Our next set of experiments evaluate BFTBrain under dy-
namic conditions, demonstrating clear performance benefits.

Cycle back conditions. In the initial series of experiments,
we selected rows 2-7 from Table 1, each characterized by an
identical network size (f = 4). We ran the settings of each
row for 30 minutes each, employing a round-robin approach
to switch to the next row and repeating the cycle from the be-
ginning after reaching row 7. We compared BFTBrain against
five baselines: the fixed protocols with the best and worst
performance (based on the number of committed requests

throughout the entire experiment), ADAPT, ADAPT#, and an
expert heuristic. Details on the last three are explained below.

To be faithful to ADAPT’s design [10], we excluded all
features capturing faults (i.e., State 2 in Section 4.2), and
pre-trained ADAPT with complete data that we collected in
these changing conditions when running BFTBrain for hours
spanning multiple protocols. To study the effect of unseen
conditions in supervised learning, we implemented another
baseline named ADAPT#. In ADAPT#, we used the same
set of complete features as BFTBrain, but pre-trained it on
partial data that we collected in these changing conditions,
i.e., excluding data corresponding to the settings of rows 5-7.
In both ADAPT and ADAPT#, for fair comparison, we used the
same set of BFT protocols as BFTBrain in their action space.
The expert heuristic we used is designed based on insights
gleaned from Table 1, namely: if proposal slowness is greater
than 20ms, use Prime; otherwise, use Zyzzyva.

Figure 2 shows the cumulative number of committed re-
quests over time, where the slope of each line indicates its
current throughput. Throughout the 4-hour experiment, BFT-
Brain successfully converges to the best-performing protocols
whenever the conditions change. In terms of the number of
requests committed, BFTBrain demonstrates 18% improve-
ment over the best fixed protocol (i.e., HotStuff-2), 119% over
the worst fixed protocol (i.e., PBFT), 14% over ADAPT, 19%
over ADAPT#, and 43% over heuristic.

As expected, both ADAPT and ADAPT# exhibit similar
performance to BFTBrain for the first 60 minutes, as the sys-
tem is operating without faults and their features and training
data encompass these conditions. However, both methods
encounter challenges when the conditions shift to rows 4-7.
ADAPT struggles since it fails to recognize the changes in con-
ditions, as faults are not captured in its feature space. While
ADAPT# does detect the changes due to its expanded feature
set, these conditions were absent during its pre-training phase.

Two things are worthy of noting. First, BFTBrain not only
outperforms both supervised learning based approaches, but
also completely removes the cumbersome data collection and
pre-training process prior to deployment. Second, in com-
mon stable conditions corresponding to row 2, BFTBrain
outperforms HotStuff-2 by 57% while being able to switch to
HotStuff-2 when conditions become advantageous for it.

10

Figure 3 further demonstrates how BFTBrain’s throughput
changes over time: (a) during minutes 0-30, and (b) during
minutes 180-210. In both periods, it encounters the conditions
captured in row 2 of Table 1. Obviously, when the system
condition cycles back to what it has seen before, BFTBrain
converges to the best-performing protocol much faster than
the first time (2s vs. 70s). The blips in both throughput plots
indicate that certain sub-optimal protocols have been chosen
for a few epochs. These are the explorations made by the
Thompson sampling algorithm when it samples the less likely
model parameters. When conditions are dynamic, such sam-
pling is crucial to avoid being stuck at a local sub-optimal
decision, since the predictive model can gain insights on the
performance of unexplored protocols in the current condition.

Randomized sampling. Our next experiment evaluates BFT-
Brain’s adaptivity when there are more variations in the state
space and when the variations are more frequent. Specifically,
each dimension in the state space follows a certain normal
distribution. We varied each dimension every 1s by randomly
sampling from its distribution, and shifted the mean and vari-
ance of such distribution every 20 minutes. Appendix D.2
presents the detailed experiment setup and results. In a nut-
shell, during the entire 2-hour deployment, BFTBrain com-
mits 44% more requests than ADAPT. This is a much larger
improvement than the 14% improvement demonstrated in the
cycle back experiment and can be explained as follows. Cer-
tain input factors in the cycle back experiment are correlated,
e.g., a request size near zero is correlated with high proposal
slowness. Thus, although ADAPT suffers from incomplete
features, it indirectly learns the best-performing protocol un-
der high proposal slowness using other features, as shown in
Figure 2 between 90-150 minutes. However, randomized sam-
pling breaks such correlations, and as a result, ADAPT does
not have enough information to know how the surrounding
environment changes which leads to poor performance.

7.4 Adaptivity to Changing Hardware
The next set of experiments evaluate BFTBrain under dif-
ferent hardware setups from our initial protocol evaluation,
and compare with the adaptivity of ADAPT to these new se-
tups. Specifically, we reran the settings of row 1 from Table 1
on a WAN (RTT=38.7ms, bandwidth=559Mbps) instead of
on a LAN, where we placed two nodes in Cloudlab’s Utah
data center on xl170 machines and the other two nodes in the
Wisconsin data center on c220g5 machines. We compared
BFTBrain with fixed protocols and with ADAPT in this setup.

The results are summarized under “Row 1 (WAN)” in Ta-
ble 2; the detailed performance plot of BFTBrain and ADAPT
is provided in Appendix D.3. Interestingly, compared to “Row
1 (LAN)” where Zyzzyva is the best protocol and leads by
15.6%, running the same workload and fault conditions on
WAN with different instance types renders CheapBFT the
best protocol, which outperforms Zyzzyva by 28.4%. The
reason is that Zyzzyva commits via the fast path and requires

Zyzzyva

Zyzzyva
Zyzzyva

Zyzzyva
Zyzzyva

CheapBFT
Zyzzyva

Hotstuff-2

Hotstuff-2
Hotstuff-2

Zyzzyva

CheapBFT

SBFT

CheapBFT

SBFT
Hotstuff-2

Prime
Prime

Prime

Prime
Hotstuff-2

Hotstuff-2

SBFT

CheapBFT

Figure 4: Robustness of BFTBrain against data pollution. The
vertical dashed lines indicate when conditions change. Labels
indicate the dominant protocol that ADAPT (before and after
pollution) chooses under each setting.

votes from all nodes, resulting in high end-to-end latency,
given the high RTT between some nodes. CheapBFT, on
the other hand, requires a smaller quorum of voters, which
could be co-located inside a single data center, thus achieving
lower latency. With a moderate number of clients (i.e., 50
in our workload), this results in CheapBFT also achieving
higher throughput than Zyzzyva due to finite parallelism. Un-
der this unseen hardware setup, BFTBrain converges to the
best-performing protocol within 1.58 minutes without requir-
ing data recollection prior to deployment. On the contrary,
ADAPT cannot transfer the knowledge it learned on different
hardware setups. As a result, when ADAPT is pre-trained with
complete data we collected on “Row 1 (LAN)”, it remains
stuck at the sub-optimal decision Zyzzyva.

This experiment demonstrates the operational benefits of
BFTBrain when hardware configurations may differ across
deployments. BFTBrain can rapidly converge to the best-
performing protocol for new hardware settings without any
human intervention. As discussed before, it may not be practi-
cal to recollect data and pre-train a supervised approach such
as ADAPT on every new hardware setup.

7.5 Robustness of BFTBrain
In a Byzantine environment, malicious nodes might arbitrarily
manipulate (i.e., pollute) their collected metrics in order to
misguide the machine learning models. Our next experiment
compares the resilience of BFTBrain and ADAPT under data
pollution. We ran the same dynamic benchmark as the “cycle
back conditions” experiment in Section 7.3, and compared
BFTBrain with ADAPT’s performance under two types of data
pollution: slight and severe. In the slight pollution scenario,
only the reward (i.e., throughput) of SBFT was increased to
2.5x of its true value. In the severe pollution, regardless of
the protocol, for every single data point, both its state and re-
ward were polluted by replacing the true values with random
values. The random value was chosen uniformly between 0

11

and 5x the maximal true value for the polluted dimension.
Note that when polluting BFTBrain, f learning agents were
malicious and hence reported polluted values as their local
measurements; when polluting ADAPT, the malicious cen-
tralized entity polluted training data and distributed the same
data to all nodes in the system.

Figure 4 shows the number of committed requests with
respect to time, under different types of pollution. Compared
to non-polluted scenarios, under slight pollution, BFTBrain
incurs only a 0.7% performance drop, while ADAPT suffers
from a 12% drop. Thus, after such slight pollution where
only less than 0.01% of the data population is polluted, BFT-
Brain outperforms ADAPT by 28%. Under severe pollution,
although the f malicious learning agents cause a distribution
shift in BFTBrain’s global state and reward, BFTBrain only
incurs a 0.5% performance drop. The reason is, as proved in
Section C.2, the learning-coordination protocol guarantees
that the global feature and reward always fall into the range
between two honest local observations. On the contrary, when
all features and rewards can be arbitrarily manipulated by the
centralized entity in ADAPT, it performs no better than ran-
domly choosing protocols. In the worst case, a smart pollution
strategy misguides ADAPT to pick the worst protocol for each
condition (as shown by the ADAPT (severe pollution) line in
Figure 4), resulting in a 55% performance drop. In such a
scenario, BFTBrain outperforms ADAPT by 154%.

7.6 Overhead of BFTBrain
Our last experiment evaluates the overhead incurred by BFT-
Brain’s learning framework. We repeated the “cycle back
conditions” experiment in Section 7.3, and plot BFTBrain’s
training and inference overhead in each epoch in Figure 15
(provided in Appendix D.4). Labels indicate the dominant
protocol that BFTBrain chooses in each segment of the figure.

The training overhead increases quasi-linearly in each seg-
ment, but zigzags across different segments. The reason is that
BFTBrain’s training overhead increases with the number of
data points in the experience bucket, and the bucket used for
training (i.e., one out of K2) depends on the previous and cur-
rent protocol. Within one segment, since BFTBrain chooses
the best-performing protocol dominantly after convergence, a
certain bucket is selected dominantly and accumulates train-
ing data. The drops of overhead in the figure is caused by
BFTBrain’s exploration of other protocol, resulting in other
smaller buckets being retrained. On the contrary, the inference
overhead is always constant with the number of epochs.

We also measured the duration of epochs in this experi-
ment: 0.88s in minimum and 1.31s in average. During the
entire 4-hour deployment, compared to the duration of epochs,
even the maximum training and inference overhead is negli-
gible, due to the lightweight nature of random forests. More
importantly, the learning agent and validator are two parallel
processes. Thus, the overhead of learning does not adversely
affect the node’s throughput, as long as there are some spare

CPU cycles devoted to the learning agent. When BFTBrain
is deployed for a longer run, techniques such as periodic re-
sampling and limiting the size of the experience bucket can
be utilized [54] to control the overhead of learning.

8 Related Work

The BFT consensus problem has been studied extensively,
and surveying it is beyond the scope of this work; readers may
find introductory material in textbooks, various surveys, and
measurement studies, e.g., [7, 17, 25, 26, 51, 56, 57, 60, 65]. As
an example, BFTSim [57] provides a simulation environment
for BFT protocols, which has been used to evaluate a set of
protocols under multiple scenarios. The specific set of BFT
protocols which are incorporated in BFTBrain [4, 19, 40, 43,
46, 52] belong to a category of solutions for a setting called
partial synchrony which has been introduced in [29].

BFTBrain employs a mechanism similar to reconfiguration
which allows the system to switch the parameters of a BFT
algorithm by agreement at certain positions within a sequence
of decisions. The reconfiguration problem has been formal-
ized in several works, both in the benign fault settings and the
Byzantine setting, e.g., [8, 13, 16, 38, 42, 49, 50].

To our knowledge, the first work to propose switching be-
tween a set of BFT protocols in real-time to adapt to dynamic
conditions is Abstract [8]. It was followed by ADAPT [10],
which further enhanced the approach by training a supervised
learning model to govern switching. BFTBrain embraces
the idea of a multi-protocol BFT engine while considerably
enhancing its practicality via a decentralized reinforcement
learning engine that provides significant operational bene-
fits and by introducing deep performance metrics, capturing
faults, and being hardware agnostic.

At the core of BFTBrain, learning in untrusted distributed
settings is made resilient against intentional data pollution
via robust aggregation and agreement. Similar techniques
have been explored in robust distributed learning studies
[3, 11, 32, 39, 44, 63]. More generally, harnessing learning
to enhance performance has been done successfully in many
systems under the umbrella of machine programming [36]:
indexing [47], query optimization [54, 62, 67], database tun-
ing [58], software analysis [41], scheduling [53], concurrency
control [59], and transaction management in blockchains [61].

9 Conclusion

Existing BFT protocols lack flexibility and adaptability, lead-
ing to suboptimal performance in various scenarios. In this
paper, we propose a practical reinforcement learning-based
BFT system called BFTBrain, which dynamically selects the
top-performing BFT protocols in real-time. Our extensive
evaluation demonstrates that BFTBrain significantly outper-
forms existing solutions under various conditions, including
dynamic environments and adversarial attacks.

12

References
[1] The diem team. https://developers.diem.com/papers/diem-

consensus-state-machine-replication-in-the-diem-
blockchain/2021-08-17.pdf, 2021.

[2] Shipra Agrawal and Navin Goyal. Further optimal regret
bounds for thompson sampling. In The International
Conference on Artificial Intelligence and Statistics, AIS-
TATS ’13.

[3] Youssef Allouah, Rachid Guerraoui, Nirupam Gupta,
Rafael Pinot, and Geovani Rizk. Robust distributed
learning: Tight error bounds and breakdown point under
data heterogeneity. In Conf. on Neural Information
Processing Systems (NeurIPS), 2023.

[4] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane.
Prime: Byzantine replication under attack. Transactions
on Dependable and Secure Computing, 8(4):564–577,
2011.

[5] Mohammad Javad Amiri, Chenyuan Wu, Divyakant
Agrawal, Amr El Abbadi, Boon Thau Loo, and Moham-
mad Sadoghi. The bedrock of byzantine fault tolerance:
A unified platform for {BFT} protocols analysis, im-
plementation, and experimentation. In 21st USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), pages 371–400, 2024.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
and Yacov Manevich. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In Eu-
ropean Conf. on Computer Systems (EuroSys), pages
30:1–30:15. ACM, 2018.

[7] Hagit Attiya and Jennifer Welch. Distributed comput-
ing: fundamentals, simulations, and advanced topics,
volume 19. John Wiley & Sons, 2004.

[8] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The next 700 bft
protocols. Transactions on Computer Systems (TOCS),
32(4):12, 2015.

[9] Amy Babay, John Schultz, Thomas Tantillo, Samuel
Beckley, Eamon Jordan, Kevin Ruddell, Kevin Jordan,
and Yair Amir. Deploying intrusion-tolerant scada for
the power grid. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 328–335. IEEE, 2019.

[10] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker.
Making bft protocols really adaptive. In Int. Parallel
and Distributed Processing Symposium, pages 904–913.
IEEE, 2015.

[11] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A
little is enough: Circumventing defenses for distributed

learning. Advances in Neural Information Processing
Systems, 32, 2019.

[12] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochas-
tic multi-armed-bandit problem with non-stationary re-
wards. In Advances in neural information processing
systems, NIPS ’14, pages 199–207.

[13] Alysson Bessani, Joao Sousa, and Eduardo EP Alchieri.
State machine replication for the masses with bft-smart.
In Int. Conf. on Dependable Systems and Networks
(DSN), pages 355–362. IEEE, 2014.

[14] Leo Breiman. Bagging predictors. In Machine Learning,
Maching Learning ’96.

[15] Leo Breiman. Random forests. 45(1):5–32.

[16] Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
335–350. USENIX Association, 2006.

[17] Christian Cachin and Marko Vukolić. Blockchain con-
sensus protocols in the wild. In Int. Symposium on
Distributed Computing (DISC), pages 1–16, 2017.

[18] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 173–186.
USENIX Association, 1999.

[19] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. Transactions on
Computer Systems (TOCS), 20(4):398–461, 2002.

[20] Lujing Cen, Ryan Marcus, Hongzi Mao, Justin
Gottschlich, Mohammad Alizadeh, and Tim Kraska.
Learned garbage collection. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL @ PLDI
’20. ACM.

[21] Olivier Chapelle and Lihong Li. An empirical evalu-
ation of thompson sampling. In Advances in neural
information processing systems, NIPS’11.

[22] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang
Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright cluster services. In Symposium on Operating
Systems Principles (SOSP), pages 277–290. ACM, 2009.

[23] Allen Clement, Edmund L Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
Symposium on Networked Systems Design and Imple-
mentation (NSDI), volume 9, pages 153–168. USENIX
Association, 2009.

13

[24] Shir Cohen, Rati Gelashvili, Lefteris Kokoris Kogias,
Zekun Li, Dahlia Malkhi, Alberto Sonnino, and Alexan-
der Spiegelman. Be aware of your leaders. In Int. Conf.
on Financial Cryptography and Data Security, pages
279–295. Springer, 2022.

[25] Miguel Correia, Giuliana Santos Veronese, Nuno Fer-
reira Neves, and Paulo Verissimo. Byzantine consensus
in asynchronous message-passing systems: a survey. Int.
Journal of Critical Computer-Based Systems, 2(2):141–
161, 2011.

[26] Tobias Distler. Byzantine fault-tolerant state-machine
replication from a systems perspective. ACM Computing
Surveys (CSUR), 54(1):1–38, 2021.

[27] Dan Dobre, Ghassan Karame, Wenting Li, Matthias Ma-
juntke, Neeraj Suri, and Marko Vukolić. Powerstore:
Proofs of writing for efficient and robust storage. In
Conf. on Computer and communications security (CCS),
pages 285–298. ACM, 2013.

[28] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The de-
sign and operation of {CloudLab}. In Annual Technical
Conf. (ATC), pages 1–14. USENIX Association, 2019.

[29] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[30] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. An
efficient, fault-tolerant protocol for replicated data man-
agement. In SIGACT-SIGMOD symposium on Princi-
ples of database systems, pages 215–229. ACM, 1985.

[31] Amr El Abbadi and Sam Toueg. Availability in parti-
tioned replicated databases. In SIGACT-SIGMOD sym-
posium on Principles of database systems, pages 240–
251. ACM, 1986.

[32] Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta,
Rafael Pinot, and John Stephan. Byzantine machine
learning made easy by resilient averaging of momen-
tums. In Int. Conf. on Machine Learning (ICML), pages
6246–6283. PMLR, 2022.

[33] Miguel Garcia, Nuno Neves, and Alysson Bessani. An
intrusion-tolerant firewall design for protecting siem
systems. In Conf. on Dependable Systems and Networks
Workshop (DSN-W), pages 1–7. IEEE, 2013.

[34] Miguel Garcia, Nuno Neves, and Alysson Bessani.
Sieveq: A layered bft protection system for critical ser-
vices. IEEE Transactions on Dependable and Secure
Computing, 15(3):511–525, 2016.

[35] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and
Michael K Reiter. Efficient byzantine-tolerant erasure-
coded storage. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 135–144. IEEE, 2004.

[36] Justin Gottschlich, Armando Solar-Lezama, Nesime Tat-
bul, Michael Carbin, Martin Rinard, Regina Barzilay,
Saman Amarasinghe, Joshua B. Tenenbaum, and Tim
Mattson. The three pillars of machine programming. In
Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Lan-
guages, MAPL 2018, pages 69–80. Association for
Computing Machinery.

[37] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev,
Chris Natoli, and Gauthier Voron. Diablo: A benchmark
suite for blockchains. In European Conf. on Computer
Systems (EuroSys). ACM, 2023.

[38] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. The next 700 bft protocols. In European
conf. on Computer systems (EuroSys), pages 363–376.
ACM, 2010.

[39] Rachid Guerraoui, Sébastien Rouault, et al. The hidden
vulnerability of distributed learning in byzantium. In Int.
Conf. on Machine Learning (ICML), pages 3521–3530.
PMLR, 2018.

[40] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael K Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
Sbft: a scalable decentralized trust infrastructure for
blockchains. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 568–580. IEEE/IFIP, 2019.

[41] Niranjan Hasabnis and Justin Gottschlich. ControlFlag:
a self-supervised idiosyncratic pattern detection system
for software control structures. In Proceedings of the 5th
ACM SIGPLAN International Symposium on Machine
Programming, MAPS ’21, pages 32–42. Association for
Computing Machinery.

[42] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and
Benjamin Reed. {ZooKeeper}: Wait-free coordination
for internet-scale systems. In Annual Technical Conf.
(ATC). USENIX Association, 2010.

[43] Rüdiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
Cheapbft: resource-efficient byzantine fault tolerance.
In European Conf. on Computer Systems (EuroSys),
pages 295–308. ACM, 2012.

[44] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi.
Learning from history for byzantine robust optimization.
In Int. Conf. on Machine Learning (ICML), pages 5311–
5319. PMLR, 2021.

14

[45] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei,
and Paul Skare. Survivable scada via intrusion-tolerant
replication. IEEE Transactions on Smart Grid, 5(1):60–
70, 2013.

[46] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
byzantine fault tolerance. Operating Systems Review
(OSR), 41(6):45–58, 2007.

[47] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and
Neoklis Polyzotis. The case for learned index structures.
In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18. ACM.

[48] Jae Kwon. Tendermint: Consensus without mining.
2014.

[49] Leslie Lamport. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[50] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Verti-
cal paxos and primary-backup replication. In symposium
on Principles of distributed computing (PODC), pages
312–313. ACM, 2009.

[51] Dahlia Malkhi. Concurrency: the works of Leslie Lam-
port. ACM, 2019.

[52] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal
two-phase responsive bft. Cryptology ePrint Archive,
2023.

[53] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning scheduling algorithms for data processing clus-
ters.

[54] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Making learned query optimization practical. In Pro-
ceedings of the 2021 International Conference on Man-
agement of Data, SIGMOD ’21. Award: ’best paper
award’.

[55] Ian Osband and Benjamin Van Roy. Bootstrapped
thompson sampling and deep exploration.

[56] Marco Platania, Daniel Obenshain, Thomas Tantillo,
Yair Amir, and Neeraj Suri. On choosing server-or client-
side solutions for bft. ACM Computing Surveys (CSUR),
48(4):1–30, 2016.

[57] Atul Singh, Tathagata Das, Petros Maniatis, Peter Dr-
uschel, and Timothy Roscoe. Bft protocols under fire.

In Symposium on Networked Systems Design and Imple-
mentation (NSDI), volume 8, pages 189–204. USENIX
Association, 2008.

[58] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic database management
system tuning through large-scale machine learning. In
Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages 1009–
1024. ACM.

[59] Jiachen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: {High-Performance} transactions via learned
concurrency control. OSDI ’21, pages 198–216.

[60] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang.
Bft in blockchains: From protocols to use cases. ACM
Computing Surveys (CSUR), 54(10s):1–37, 2022.

[61] Chenyuan Wu, Bhavana Mehta, Mohammad Javad
Amiri, Ryan Marcus, and Boon Thau Loo. AdaChain:
A learned adaptive blockchain. Proc. of the VLDB En-
dowment, 16(8):2033–2046, 2023.

[62] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam
Mittal, Michael Luo, and Ion Stoica. Balsa: Learning
a query optimizer without expert demonstrations. In
Proceedings of the 2022 International Conference on
Management of Data, SIGMOD ’22, pages 931–944.
Association for Computing Machinery.

[63] Dong Yin, Yudong Chen, Ramchandran Kannan, and
Peter Bartlett. Byzantine-robust distributed learning: To-
wards optimal statistical rates. In Int. Conf. on Machine
Learning (ICML), pages 5650–5659. PMLR, 2018.

[64] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Sympo-
sium on Principles of Distributed Computing (PODC),
pages 347–356. ACM, 2019.

[65] Gengrui Zhang, Fei Pan, Michael Dang’ana, Yunhao
Mao, Shashank Motepalli, Shiquan Zhang, and Hans-
Arno Jacobsen. Reaching consensus in the byzantine
empire: A comprehensive review of bft consensus algo-
rithms. arXiv preprint arXiv:2204.03181, 2022.

[66] Li Zhou. A survey on contextual multi-armed bandits.

[67] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen,
Andreas Pfadler, Ziniu Wu, and Jingren Zhou. Lero: A
learning-to-rank query optimizer. 16(6):1466–1479.

15

Figure 5: PBFT protocol

Figure 6: HotStuff-2 protocol

A Background on Selected BFT Protocols
In this section, we provide background on BFT protocols that
are experimentally studied in Section 2.
PBFT [18, 19]. PBFT (Figure 5) is a leader-based protocol
that operates in a succession of configurations called views
[30,31]. Each view is coordinated by a stable leader (primary).
PBFT consists of pre-prepare, prepare, and commit phases.
The pre-prepare phase assigns an order to the request, the
prepare phase guarantees the uniqueness of the assigned order,
and the commit phase guarantees that the next leader after
view-change can safely assign the order.

During a normal case execution of PBFT, clients send their
signed request messages to the leader. In the pre-prepare
phase, the leader assigns a sequence number to the request to
determine the execution order of the request and multicasts a
pre-prepare message to all backups. Upon receiving a valid
pre-prepare message from the leader, each backup node mul-
ticasts a prepare message to all nodes and waits for prepare
messages from 2 f different nodes (including the node itself)
that match the pre-prepare message. The goal of the prepare
phase is to guarantee safety within the view, i.e., 2 f nodes
received matching pre-prepare messages from the leader node
and agree with the order of the request.

Each node then multicasts a commit message to all nodes.
Once a node receives 2 f + 1 valid commit messages from
different nodes, including itself, that match the pre-prepare
message, it commits the request. The goal of the commit
phase is to ensure safety across views, i.e., the request has
been voted on a majority of non-faulty nodes and can be
recovered after (leader) failures. The second and third phases
of PBFT follow the clique topology, i.e., have O(n2) message

Figure 7: Zyzzyva protocol (fast path)

Figure 8: Zyzzyva protocol (slow path)

complexity. If the node has executed all requests with lower
sequence numbers, it executes the request and sends a reply
to the client. The client waits for f +1 matching results from
different nodes.
HotStuff-2 [52]. HotStuff-2 (Figure 6) HotStuff-2 is a leader-
based BFT protocol with two main properties. First, it pro-
vides linear communication complexity (rather than quadratic
as in PBFT). Specifically, each all-to-all communication phase
of PBFT is replaced with two linear phases in HotStuff; one
from the replicas to the leader and one from the leader to
the replicas. Second, HotStuff-2 uses the leader rotation tech-
nique, where the leader is replaced after every single proposal
in a predetermined manner (round-robin). This is in contrast
to most existing protocols that rely on a stable leader, and
the leader is changed only when it is suspected to be faulty.
Compared to the original HotStuff [64], HotStuff-2 reduces
one phase of communication, improving the overall perfor-
mance of the protocol. Chaining (also proposed in [64]) is
an optimization technique that is applicable to both HotStuff
and HotStuff-2. The chaining optimization involves execut-
ing some phases which are deemed identical in a pipelined
manner in order to reduce the latency of request processing.
Zyzzyva [46]. Zyzzyva (Figure 7) optimistically assumes
that the leader and all backups are non-faulty. Hence, upon
receiving an order message from the primary node which
includes the request, nodes speculatively execute requests
without running any agreement and send reply messages to
the client. The client waits for 3 f + 1 matching replies to
accept the results. If the client timer is expired and the client
has received matching replies from between 2 f +1 and 3 f
nodes, as presented in Figure 8, two more linear rounds of
communication are needed to ensure that at least 2 f +1 nodes

16

Figure 9: SBFT protocol (fast path)

Figure 10: SBFT protocol (slow path)

have committed the request.
SBFT [40]. SBFT4 presents a linear optimistic fast path (Fig-
ure 9), assuming all nodes are non-faulty. In SBFT, upon
receiving a pre-prepare message from the primary node, all
nodes send sign-share messages to the commit collector (i.e.,
the primary in our figure). If the commit collector is able to
collect 3 f +1 sign-share messages, it puts them together to
generate a commit message and broadcasts it to the backups.
Otherwise (the commit collector does not receive messages
from all backups in the sign-share phase and its timer is
expired), SBFT switches to its slow path (Figure 10) and re-
quires two more linear rounds of communication (prepare
phase). The dual-path nature of SBFT requires nodes to sign
each message with two schemes (i.e., 2 f +1 and 3 f +1). To
send replies to the client, a single (execution collector) node
receives replies from all nodes and sends a single (threshold)
signed reply message.
CheapBFT [43]. CheapBFT (Figure 11) differs from PBFT
in two major ways. First, it puts f nodes as passive nodes
by optimistically assuming all nodes participating in the quo-
rum (i.e., called active nodes) are honest. Second, it relies on
trusted hardware to prevent equivocation. CheapBFT reduces
the required quorum of active nodes to f +1 (the total number
of nodes becomes 2 f +1) in its normal case execution, and
reduces the number of phases from three to two as compared
with PBFT (i.e., no pre-prepare phase). If an active node
becomes faulty, it is replaced with a passive node.
Prime [4]. Prime (Figure 12) is a robust protocol by incorpo-
rating a pre-ordering stage. In the pre-ordering stage, nodes
exchange the requests they receive from clients and period-

4SBFT tolerates both crash and Byzantine failure (n= 3 f +2c+1 where c
is the number of crashed nodes). Since the focus of this paper is on Byzantine
failures, we consider a variation of SBFT where c = 0.

Figure 11: CheapBFT protocol

Figure 12: Prime protocol

ically share a vector of all received requests, expecting the
leader to globally order requests following those vectors. In
this way, nodes can also monitor the leader to order requests
in a fair manner. Prime also uses timers to periodically check
performance of the protocol and replace the primary node if
it does not provide acceptable performance (e.g., under slow-
ness attack) corresponding to the current network condition.

B Switching BFT Protocols
In this section, we describe how BFTBrain performs the actual
switching from BFT protocol t to t +1.

Similar to Abstract, BFTBrain operates in epochs. Each
epoch in BFTBrain can be considered as a Backup instance
in Abstract, which is marked by the completion of k requests,
where k is a predefined constant hyper-parameter. For each
epoch, an existing BFT protocol in our action space (i.e.,
PBFT, Zyzzyva, CheapBFT, Prime, SBFT, and HotStuff-2)
is selected by the learning agent and remains unchanged
throughout the epoch.

The Backup instance in Abstract is a thin wrapper that can
be put around an existing BFT protocol. Backup works as fol-
lows: it is inactive until it receives a request containing a valid
init history, which is an unforgeable history generated by the
preceding BFT instance. At this point, Backup sets its state by
executing the requests in the init history it received. Then, it
simply executes the first k requests committed by the underly-
ing BFT protocol, aborts all subsequent requests, and returns
the signed sequence of executed requests as the init history
for the next BFT instance. A client can switch from a Backup
instance t to instance t +1 as soon as it receives f+1 signed
messages from different replicas, containing an identical init
history. The client uses the init history to invoke instance t+1.
Once instance t aborts some requests and switches to t +1, it
cannot commit any subsequently invoked requests.

17

Optimizations of Abstract. Abstract also implements the
following optimization for the switching procedure above:
align switching from a Backup instance with a checkpoint in
order to minimize the size of init history, which is transferred
through clients. In Abstract, BFT instances t and t +1 might
be run on two different clusters, and not every instance is a
Backup instance whose progress condition is k committed
requests. For example, an instance could be Quorum whose
progress condition is 3 f +1 matching history, or Chain whose
progress condition is one correct reply, both of which require
an honest client to validate the progress condition and ini-
tiate the switching. On the contrary, in BFTBrain, all BFT
instances are run on the same cluster of machines, and every
BFT instance is a Backup instance. Thus, the optimization
can be taken one step further inside BFTBrain. First, instead
of relying on the client, each replica has enough information
to decide whether to switch or not. Once executing k requests,
each replica multicasts an init history (i.e., checkpoint) to all
other replicas. Second, an honest replica does not need to be
blocked and wait for f +1 signed matching init history and
execute it before starting the new epoch, since the init history
is already reflected in its local service state. Once k requests
are committed in epoch t and the BFT protocol for t + 1 is
derived by the learning agent, epoch t +1 is invoked. In other
words, the switching can be performed asynchronously inside
BFTBrain with low overhead.
Speculative Backup instances. Backup can be easily imple-
mented over an existing BFT protocol, except for specula-
tive protocols where clients are the commit collectors, e.g.,
Zyzzyva. This is because such protocols rely on clients to de-
cide if a request has been committed, while the replicas might
not have enough information to tell. Specifically, in Zyzzyva,
if a request commits in the slow path where the client only re-
ceives 2 f +1 replies with matching history (instead of 3 f +1
replies in its fast path) and multicasts a commit certificate
to all replicas, the replicas can deterministically commit the
request as well. However, if a request commits in the fast path,
the client directly completes the request without notifying the
replicas. Thus, the replicas can not decide whether the current
epoch is finished.

To address this issue, when running speculative protocols
in epoch t, BFTBrain enforces the k-th request (i.e., the last
request in t) to be a special NOOP request and to be committed
in the slow path. On each replica, the view-change timer for
this request is only removed when it can be considered as
committed. Specifically, for the k-th request, the leader acts
as a dummy client and multicasts a commit certificate even
if 3 f + 1 replies with matching history are received. Upon
receiving the commit certificate or f + 1 signed matching
init history for epoch t + 1, replicas can safely consider the
k-th request of epoch t as completed. Note that a malicious
dummy client might refuse to multicast the commit certificate.
In this case, view-change is triggered and a new leader will be
elected, which will act as a new dummy client for this request.

Then, in the NEW-VIEW message, for this k-th request, the new
leader always inserts a ORDER-REQ message where the original
NOOP request is replaced by the NOOP request proposed by
its own dummy client. For this special request, no safety
issues exist since its content is not part of the service state.
The mechanisms above guarantee that each honest replica
will successfully commit this request (i.e., liveness), and thus
concluding the current epoch.
Correctness of switching. Below, we discuss the safety and
liveness of switching between epochs.
Safety. Abstract’s idempotency theorem [8] specifies that if
individual BFT instances are correct, irrespectively of each
other, then the system composed through switching is also
correct. Since each BFT instance in BFTBrain is an existing
protocol whose safety has been previously proven (instead of
our newly invented protocol), the composed system is safe.
Liveness. Abstract guarantees liveness if a request is not
aborted by all instances, which can be made simple by reusing
an existing BFT protocol as one of the instances. Apparently,
BFTBrain satisfies this requirement too.

Moreover, to ensure liveness, Abstract exponentially in-
creases the parameter k with every new instance of Backup by
default. This is to prevent a corner case with very slow clients:
k requests committed by a single Backup instance i might all
be invoked by the same, fast client, while a slow client can
then get its requests aborted by i. The same can happen with
a subsequent Backup instance, and so forth. By exponentially
increasing k, this liveness issue is resolved since no realis-
tic load increases faster than exponentially. Alternatively, by
having the replicas across different Backup instances share
a client input buffer, such an issue can also be prevented
without exponentially increasing k. BFTBrain takes the latter
approach, since all epochs run on the same cluster, so the
client input buffer is naturally shared across epochs.

C Learning Coordination
In this section, we present BFTBrain’s learning coordination
protocol and discuss the correctness of BFTBrain.

C.1 Detailed Description of The Protocol
Algorithm 1 presents the detailed learning coordination pro-
tocol, where VBC (i.e., any “blackbox” validated Byzantine
consensus primitive) is implemented using PBFT. As shown
in lines 1-7, after executing w requests (a hyper-parameter)
in epoch t, each node i collects local performance indica-
tors pt−1

i measured during epoch t − 1, featurizes the next
state f t+1

i , and broadcasts both metrics inside a report mes-
sage. Each agent i collects the received valid report messages
where pt−1

j and f t+1
j are non-null, into a local set reportQCt

i .
Upon collecting f +1 report messages from different agents,
the agent triggers the coordination protocol for epoch t and
starts a view-change timer τc,1 to track the progress (lines
8-11).

Each time an agent l becomes the leader, as shown in lines
12-15 (the view-change leader is omitted), it starts an addi-

18

Table 3: The throughput of each studied protocol under different conditions. Each row characterizes a different condition, where
the best throughput is highlighted in blue.

Condition Parameters Throughput (tps)
f # of clients # of absentees request size proposal slowness PBFT Zyzzyva CheapBFT Prime SBFT HotStuff-2

1 50 0 4KB 0ms 9133 13664 11822 4601 11067 6882
4 100 0 4KB 0ms 4316 10699 7966 4239 6414 7124
4 100 0 100KB 0ms 4261 6513 7353 4177 6518 6779
4 100 4 4KB 0ms 5386 1929 10011 4440 5347 8848
4 100 0 0KB 20ms 2435 2424 2433 4265 2432 6201
4 100 0 1KB 20ms 2435 2424 2432 4211 2433 6099
4 100 0 0KB 100ms 497 498 497 4257 497 3641
1 50 0 0KB 20ms 989 988 989 4527 989 2640

tional timer τc,2 for collecting 2 f +1 reports. Once the size
of reportQCt

l reaches 2 f +1 or τc,2 expires, the leader mul-
ticasts ⟨C-PROPOSE,vc,nc, t,d⟩σl ,reportQCt

l ⟩ message to all
agents, where vc is the view in the coordination protocol, nc
is the sequence number in the coordination protocol, t is the
epoch id, and d is the digest of reportQCt

l .

Once a coordinator agent i receives a valid c-propose with
coordination sequence nc that it has not voted for, it accepts
that proposal and multicasts a c-prepare message if: (1) the
size of corresponding reportQCt

l is at least f +1, (2) t is not
committed and (3) nc−1 is committed (lines 16-18).

Then, similar to PBFT, after the c-prepare and c-commit
phases, the predicate c-committed(vc,nc, t,reportQCt

l) be-
comes true if 2 f +1 matching c-commit messages from dif-
ferent agents have been received. Once committed, agent
i checks the size of reportQCt

l . If smaller than 2 f + 1, the
learning algorithm (i.e., retraining and inference based on pre-
dictive models) is not invoked, and the agent utilizes the same
protocol for epoch t +1 as in the current epoch t. It also initi-
ates a view-change on the current BFT protocol used by its
validator and multicasts a c-view-change message to all other
agents. Here, sc stands for the last stable checkpoint known
to i in the coordination protocol, Cc is a set of c-checkpoint
messages proving the correctness of sc, and Pc is a set contain-
ing a set PreportQC for each reportQC that prepared at i with a
coordination sequence number higher than sc. Each PreportQC
contains the c-propose and c-prepare messages (lines 23-26).
Otherwise, if the size is 2 f +1, for reward and each state di-
mension, the median value is taken as the global reward pt−1

and state f t+1. The state-action-reward triplet for epoch t−1
is then added to the experience buffer, the predictive mod-
els are re-trained, and a promising BFT protocol is inferred
for epoch t +1 based on state f t+1 (lines 27-31). Finally, re-
gardless of the size of reportQCt

l , a c-checkpoint message is
multicast to all coordination agents.

Upon timer τc,1 expires, each coordination agent multicasts
a c-view-change message to all agents. Once receiving 2 f +
1 c-view-change messages from different agents, the new
leader l′ begins the c-new-view phase similar to PBFT. At
the end of this phase, l′ checks all PreportQC of Pc components
collected in the view-change quorum. If none of them includes

a reportQC for epoch t, l′ will multicast a c-propose message
to all agents which carries the reportQCt

l′ it has collected.
We argue that the leader agent could also deliberately delay

c-propose messages. However, unlike the active BFT instance
in each epoch that has tens of thousands of requests to com-
mit, this coordination protocol runs only once every epoch.
Thus, the performance impact of such malicious behavior is
negligible.

C.2 Proof Sketch
Below, we formalize the safety, liveness, and robustness guar-
antees of BFTBrain, followed by the proof sketch.
Safety. For each epoch t, each honest learning agent will
agree on the same feature and the same reward if its learning
algorithm is invoked.
Proof: We prove by contradiction that only one reportQC
can be committed for the same epoch t. First, by reduction to
PBFT, c-propose, c-prepare, c-commit phases guarantee that
for each coordination sequence nc, only one reportQC can
be committed. Then, assume two different reportQC for the
same epoch t are committed at different nc: reportQCt

j com-
mitted at nc,1, and reportQCt

k at nc,2, where nc,1 < nc,2 and
D(reportQCt

j) ̸= D(reportQCt
k). At least one honest agent i

needs to accept the c-propose for both reportQC. Since the
network is asynchronous, we consider two cases. If nc,1 is
committed before nc,2 on i, i needs to accept c-propose with
reportQCt

k when t is already committed. Otherwise if nc,1
is committed at the same time with or after nc,2, i needs to
accept reportQCt

k whose coordination sequence is nc,2, be-
fore nc,2−1 is committed. Both cases contradict with line 17
of Algorithm 1. Thus, only one reportQC can be committed
for the same epoch t. Finally, since an honest learning agent
takes the median value of the same committed reportQC, they
agree on the same feature and reward if reportQC includes
2 f +1 reports.

Following this safety property, through deterministic train-
ing (i.e., using the same random seed on each learning agent),
each honest learning agent in BFTBrain derives the same
action (i.e., BFT protocol) for the same epoch t.
Liveness. BFTBrain guarantees that every honest agent even-
tually invokes its learning algorithm in the same epoch.
Proof: If fewer than 2 f +1 reports are collected, the learning

19

Algorithm 1 Learning coordination
▷ On each agent i

1: Upon execution of w requests in epoch t
2: if no state transfer happens during epoch t−1 then
3: Record performance pt−1

i
4: if no state transfer happens during epoch t then
5: Extract features f t+1

i from executed requests in window w
6: if pt−1

i ̸= null∧ f t+1
i ̸= null then

7: Multicast ⟨REPORT, t, i, pt−1
i , f t+1

i ⟩σi to all agents
8: Upon receiving valid REPORT message m
9: Add m to reportQCt

i
10: if reportQCt

i .size = f +1 then
11: Start timer τc,1

▷ On the leader agent l
12: Upon reportQCt

l .size reaching f +1
13: Start timer τc,2 ▷ τc,2 < τc,1
14: Upon timer τc,2 timeouts ∨ reportQCt

l .size = 2 f +1
15: Multicast ⟨C-PROPOSE,vc,nc, t,d⟩σl ,reportQCt

l ⟩ to all agents
▷ On each agent i

16: Upon receiving a valid C-PROPOSE from the leader
17: if reportQCt

l .size≥ f +1∧ t is not committed ∧nc−1 is committed
then

18: Multicast ⟨C-PREPARE,vc,nc, t,d, i⟩σi to all agents
19: Upon receiving valid matching C-PREPARE from 2 f + 1 different

agents
20: Multicast ⟨C-COMMIT,vc,nc, t,d, i⟩σi to all agents
21: Upon receiving valid matching C-COMMIT from 2 f +1 different agents
22: Commit (vc,nc, t,reportQCt

l)
23: if reportQCt

l .size < 2 f +1 then
24: protocolt+1 ← protocolt

25: Initiate view change on validator i in protocolt

26: Multicast ⟨C-VIEW-CHANGE,vc +1,sc,Cc,Pc, i⟩σi to all agents
27: else
28: pt−1←median{m.pt−1

j |m ∈ reportQCt
l}

29: f t+1←median{m. f t+1
j |m ∈ reportQCt

l}
30: Add (f t−1, protocolt−1, pt−1) to experience buffer
31: protocolt+1 ← BESTPREDICTEDPROTOCOL(f t+1)
32: Multicast ⟨C-CHECKPOINT,nc, t, i,reportQCn

l ⟩σi to all agents
33: Upon timer τc,1 timeouts
34: Multicast ⟨C-VIEW-CHANGE,vc +1,sc,Cc,Pc, i⟩σi to all agents

▷ On the leader agent l′ of view vc +1
35: if no set in the Pc components has reportQCt

l then
36: Multicast ⟨C-PROPOSE,vc +1,nc, t,d⟩σl′ ,reportQCt

l′ ⟩ to all agents
▷ The remaing view change routine are omitted here

algorithm will be ineffective (i.e. not invoked) for one epoch,
and the BFT protocol chosen for the next epoch will be the
same as the current one. We first show agents are able to com-
mit a reportQC of 2 f +1 reports within f consecutive epochs
(Part 1). We then show if such reportQC is committed for
epoch t, every honest agent will invoke its learning algorithm
in epoch t (Part 2).
Part 1: In the active BFT protocol of any certain epoch, there
can be at most f honest validators placed in-dark by the mali-
cious leader, since otherwise, f +1 validators will trigger a
view-change to replace the leader in the epoch. The agents on
these in-dark validators will not send report messages accord-
ing to our protocol. In addition, at most f malicious agents
can deliberately refuse to send report messages. Thus, each
agent is guaranteed to receive at least f +1 reports for epoch
t, which starts a timer τc,2 on leader agent l for collecting
2 f +1 reports in reportQCt

l and a timer τc,1 on each agent for
tracking the progress of coordination protocol. If reportQCt

l

is committed, a view-change in the active BFT protocol used
by validators will be initiated if it contains less than 2 f +1
reports. Since such coordination is run once every epoch, an
honest leader validator will be found within at most f consec-
utive epochs. Otherwise, if reportQCt

l is not committed, the
leader agent will be replaced while the current epoch waits
for a report quorum to be committed.
Part 2: If a reportQC of size 2 f +1 is committed on an agent,
it is committed on at least 2 f + 1 agents, otherwise c-view-
change is triggered and it will be committed in view vc +1
or above. Thus, at least f +1 honest agents will multicast a
c-checkpoint message containing the reportQC as the service
state of the coordination protocol. Every honest agent, even if
it is placed in dark by the malicious leader agent, will receive
this stable checkpoint and thus invoke its learning algorithm.
Robustness. If honest feature/reward values form a range
[rl ,rh], the global feature/reward taken by the learning agent
always falls into this range.
Proof: According to our protocol, honest nodes never report
invalid (e.g., zero or null) values to others, even when they
are placed in-dark and recover their service state from others.

The learning agent only takes the median value of
reportQC of size 2 f + 1, where at most f can be arbitrary
values reported by malicious replicas, and the remaining f +1
is guaranteed to be honest. Now we prove by contradiction:
w.l.o.g., assume the median value of reportQC is rm, where
rm > rh. Since there are at least f +1 honest values smaller
than rm, to make rm the median, at least f +1 dishonest values
larger than rm need to be reported. This contradicts the fact
that, at most f can be arbitrary values in reportQC.

D Additional Experiment Results
D.1 Comprehensive Performance Comparison
Table 3 presents the comprehensive performance comparison
results, which were previously summarized by Table 1 in Sec-
tion 2. Under each different condition (i.e., row), we list the
throughput of each protocol in terms of transactions per sec-
ond. For a fair comparison, the common internal parameters
of all six protocols are configured with the same value: we set
the batch size to be 10 and the view-change timer to be 100ms.
The protocol-specific internal parameters (e.g., leader rotation
interval of HotStuff-2, the aggregation delay for global order-
ing in Prime, the timer that distinguishes fast path vs. slow
path in Zyzzyva) are configured with a reasonable value such
that the protocol has good performance on all conditions.

D.2 Randomized Sampling
Compared to the “cycle back conditions” experiment in Sec-
tion 7.3, we created a benchmark that has more variations in
the state space and introduced the variations more frequently.
Specifically, each dimension in category State 1 and 2 (except
F1) follows a certain normal distribution independently. We
vary each dimension every 1s by randomly sampling from its
distribution, and shift the mean and variance of such distribu-

20

Figure 13: Adaptivity of BFTBrain compared to ADAPT under
randomly sampled conditions.

Figure 14: Adaptivity of BFTBrain compared to ADAPT under
different hardware (WAN).

tion every 20 minutes. During the first hour of the experiment,
all validators (n = 13) are responsive, whereas during the
second hour, f validators are non-responsive. The entire ex-
periment lasts 2 hours. Compared to other dimensions, we
varied F1 at a lower frequency, since in real deployment sce-
narios, client workloads vary more frequently than faults in
the system. The exact distribution we used and their shifting
pattern can be found here5.

We compare BFTBrain with state-of-the-art learning based
approach ADAPT, which is pre-trained with complete data that
we collected in this setup when running BFTBrain. Figure 13
shows the number of committed requests with respect to time.
During the first 40 minutes, ADAPT performs even slightly
better than BFTBrain. This is because BFTBrain incurs a
few explorations (i.e., chooses sub-optimal protocols) when
starting the system from scratch and the experience buckets
are all empty, while ADAPT exploits its prior knowledge and
thus avoids all such explorations. However, starting from 40

5https://github.com/JeffersonQin/BFTBrain/tree/master/
exp/randomize

Zyzzyva

CheapBFT

Hotstuff

Prime

Figure 15: Learning overhead of BFTBrain in each epoch.

minutes, when the condition varies towards a more Byzan-
tine setup (i.e., with persistent in-dark attacks and leaders
that appear randomly slow), BFTBrain gradually outperforms
ADAPT since the latter does not featurize faults in the system.
Thus, although pre-trained with complete data, ADAPT consis-
tently picks sub-optimal protocols since its predictive model
does not have enough information to tell how the condition
changed. As a result, during the entire 2-hour deployment,
BFTBrain commits 44% more requests than ADAPT.

Compared to the 14% improvement in the “cycle back” ex-
periment, BFTBrain improves ADAPT by a larger margin in
this experiment. The reason is that some input factors in the
cycle back experiment are correlated, e.g., a request size near
zero is correlated with high proposal slowness. Thus, although
ADAPT suffers from incomplete features, it indirectly learns
the optimal protocol under high proposal slowness using other
features, as shown in Figure 2 between 90-150 minutes. How-
ever, the randomized sampling in this experiment breaks such
a correlation.

D.3 Adaptivity under WAN
Figure 14 plots BFTBrain and ADAPT’s throughput with re-
spect to time on the “Row 1 (WAN)” setup described in Sec-
tion 7.4. Here, ADAPT is pre-trained with complete data we
collected on “Row 1 (LAN)”, while BFTBrain is started from
scratch. BFTBrain converges to the optimal protocol Cheap-
BFT after a few explorations. On the contrary, ADAPT does
not perform any explorations and performs relatively well
from the very beginning, but is stuck at the sub-optimal deci-
sion Zyzzyva. This is because the supervised model ADAPT
trained is dependent on the hardware. Therefore, ADAPT can-
not transfer what it learned on a LAN setup to a WAN setup,
unless running a prolonged data re-collection process and
re-training the supervised model before this new deployment.

D.4 Overhead of BFTBrain
Figure 15 plots BFTBrain’s training and inference overhead
in each epoch. Labels indicate the dominant protocol that
BFTBrain chooses in each segment of the figure.

21

https://github.com/JeffersonQin/BFTBrain/tree/master/exp/randomize
https://github.com/JeffersonQin/BFTBrain/tree/master/exp/randomize

	Introduction
	Landscape of BFT Performance
	Comparing Representative BFT Protocols
	The Case for Reinforcement Learning

	BFTBrain Overview
	System Model
	Design Overview

	Learning Algorithms
	Problem Formulation
	State and Action Space
	Predictive Model

	Learning Coordination
	Implementation
	Evaluation
	Experimental Setup
	Convergence under Static Conditions
	Adaptivity under Changing Conditions
	Adaptivity to Changing Hardware
	Robustness of BFTBrain
	Overhead of BFTBrain

	Related Work
	Conclusion
	Background on Selected BFT Protocols
	Switching BFT Protocols
	Learning Coordination
	Detailed Description of The Protocol
	Proof Sketch

	Additional Experiment Results
	Comprehensive Performance Comparison
	Randomized Sampling
	Adaptivity under WAN
	Overhead of BFTBrain

