Check for
updates

R DIGITAL associaiion
acvyel® 155 Ry e @m open)

£ Latest updates: https://dl.acm.org/doi/10.1145/3756907.3756920

RESEARCH-ARTICLE
On the Automated Verification of BGP Convergence

HAOYUN QIN, University of Pennsylvania, Philadelphia, PA, United States
GERALD WHITTERS, University of Pennsylvania, Philadelphia, PA, United States
BOON THAU LOO, University of Pennsylvania, Philadelphia, PA, United States
CAROLYN L TALCOTT, SRI International, Menlo Park, CA, United States

Open Access Support provided by:
SRI International

University of Pennsylvania

: PDF Download
j;b 3756907.3756920.pdf
< 14 January 2026

Total Citations: 0
Total Downloads: 93

Published: 10 September 2025
Citation in BibTeX format

PPDP '25: Proceedings of the 27th
International Symposium on Principles
and Practice of Declarative Programming
September 10 - 11, 2025

Rende, Italy

PPDP '25: Proceedings of the 27th International Symposium on Principles and Practice of Declarative Programming (September 2025)

https://doi.org/10.1145/3756907.3756920
ISBN: 9798400720857

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3756907.3756920
https://dl.acm.org/doi/10.1145/3756907.3756920
https://dl.acm.org/doi/10.1145/contrib-99661777612
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/doi/10.1145/contrib-99660639170
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/doi/10.1145/contrib-81100594279
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/doi/10.1145/contrib-81100565116
https://dl.acm.org/doi/10.1145/institution-60000461
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60000461
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3756907.3756920&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ppdp
https://dl.acm.org/conference/ppdp
https://dl.acm.org/conference/ppdp
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3756907.3756920&domain=pdf&date_stamp=2025-12-13

On the Automated Verification of BGP Convergence

Haoyun Qin”
University of Pennsylvania
Philadelphia, PA, USA
ghy@seas.upenn.edu

Boon Loo
University of Pennsylvania
Philadelphia, PA, USA
boonloo@seas.upenn.edu

Abstract

The Border Gateway Protocol (BGP) is employed by autonomous
systems (ASes), such as network operators or ISPs, to build routing
tables. However, depending on the routing policies implemented
by these ASes, BGP may fail to converge, potentially rendering
the network inoperative. This paper introduces a workflow that
leverages SMT solvers and rewriting tools to automate the verifica-
tion of BGP convergence within a given AS network. We encode
the convergence conditions defined by the Metarouting theoretical
framework as an SMT problem. While SMT solvers can automati-
cally determine whether BGP will converge, they do not generate
counterexample traces in cases of divergence. To overcome this
shortcoming, we propose a sound divergence criterion. We also con-
struct an executable model for verifying BGP convergence, which
can be automated using the Maude rewriting tool to produce wit-
ness traces in divergent scenarios. The effectiveness of our approach
is demonstrated through a series of experiments.

CCS Concepts

» Theory of computation — Automated reasoning; Logic and
verification; Equational logic and rewriting; Verification by
model checking; « Networks — Routing protocols; Formal
specifications; Protocol testing and verification; « Mathemat-
ics of computing — Solvers.

Keywords
BGP, Maude, SMT, Metarouting

ACM Reference Format:

Haoyun Qin, Gerald Whitters, Boon Loo, and Carolyn Talcott. 2025. On
the Automated Verification of BGP Convergence. In Proceedings of the 27th
International Symposium on Principles and Practice of Declarative Program-
ming (PPDP ’25), September 10-11, 2025, Rende, Italy. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3756907.3756920

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
PPDP °25, Rende, Italy

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2085-7/25/09

https://doi.org/10.1145/3756907.3756920

Gerald Whitters
University of Pennsylvania
Philadelphia, PA, USA
whitters@seas.upenn.edu

Carolyn Talcott
SRI International
Menlo Park, CA, USA
carolyn.talcott@gmail.com

1 Introduction

Due to the scale and concurrent nature of modern networks, iden-
tifying configuration bugs is a significant challenge. When such
issues go undetected, they can lead to severe and sometimes cata-
strophic network failures. The widely used Border Gateway Pro-
tocol (BGP) enables autonomous systems (ASes) to build routing
tables according to their packet forwarding policies, also known
as preference relations. Prior work has shown that poorly con-
figured or conflicting policies can prevent BGP from converging,
leading to unstable routing tables and rendering the network non-
operational [5, 8, 9]. We refer to the liveness property concerning
whether routing tables eventually stabilize as the BGP convergence
problem.

Reasoning about BGP convergence has long been a difficult prob-
lem due to the protocol’s asynchronous execution, path-dependent
decisions, and policy-driven behavior. Existing formal verification
methods for BGP convergence generally fall into two categories.

(1) Correct-by-design approaches, such as Metarouting [7, 12],
allow network engineers to ensure BGP convergence by
proving that the preference relations of ASes satisfy certain
monotonicity conditions [7, 12]. However, a major limitation
of these methods is their lack of automation, which prevents
them from efficiently detecting policy conflicts.

(2) Model-checking approaches [15, 16], in contrast, are designed
to identify policy errors automatically. However, either the
techniques proposed so far are not sound, meaning they
may produce false positives, i.e., flagging problems that do
not actually exist, or they are not scalable [17], not able to
determine divergence even for networks with less than 5
nodes.

This paper revisits the BGP convergence problem with the goal
of developing sound, scalable, and automated verification methods.
The central innovation lies in combining the strengths of the two
existing approaches. First, we automate correct-by-design tech-
niques to verify whether a given network instance is guaranteed to
converge. We show how SMT solvers can be employed to perform
this verification automatically.

When convergence cannot be guaranteed, we turn to model-
checking methods to uncover concrete counterexamples that demon-
strate divergence. These counterexamples provide valuable diagnos-
tic information, enabling network engineers to identify and correct
misconfigurations.

This is a Corrected VoR published on January 12, 2026. The VoR may still be accessed via the Supplemental Material section at https://dl.acm.org/doi/10.1145/3756907.3756920

https://orcid.org/0000-0001-7721-8196
https://orcid.org/0009-0003-2460-1409
https://orcid.org/0000-0002-4757-1746
https://orcid.org/0000-0003-2845-7144
https://doi.org/10.1145/3756907.3756920
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3756907.3756920

PPDP ’25, September 10-11, 2025, Rende, Italy

One of the main challenges in using model checking to find
a witness for BGP divergence is the potentially large size of the
network. Our key insight is to leverage the SMT solver’s ability to
generate unsat cores, which are minimal sets of constraints respon-
sible for unsatisfiability in the convergence check. In the context of
BGP, the unsat core highlights the specific network links and policy
interactions that contribute to divergence. These critical links are
then used to focus the model checker’s exploration, significantly
reducing the overall search space and improving efficiency.

To achieve this goal, this paper makes the following key contri-
butions:

e SMT Encoding of Metarouting: We present an encoding
of the Metarouting criteria for BGP convergence as an SMT
problem, enabling the use of SMT solvers to perform con-
vergence checks automatically. This approach overcomes
a central limitation of Metarouting, which is its lack of au-
tomation. Our approach allows engineers to systematically
verify convergence conditions.

e Sound Criterion for Divergence: Verifying liveness prop-
erties such as BGP convergence is inherently difficult. A
common approach is to reduce liveness verification to a
safety check [2]. We introduce a sound safety-based crite-
rion for detecting BGP divergence. This criterion relates
to the sequence of messages exchanged between ASes and
identifies conditions under which BGP fails to stabilize. It
leverages links identified in the SMT solver’s unsat core, i.e.,
candidate links that are involved in non-terminating BGP
computations, as input. To the best of our knowledge, this is
the first sound divergence criterion formulated for the BGP
convergence problem.

o Executable Model for BGP Verification: We demonstrate
that our divergence criterion can be fully automated. By for-
malizing both the criterion and BGP’s operational semantics
in rewriting logic, we enable executable verification using
the Maude rewriting tool [3]. Furthermore, we show how
the SMT-derived unsat core can be used to guide the search
process, significantly reducing the state space and enabling
the generation of meaningful counterexamples.

Our methods have been validated on networks combining sev-
eral networks gadgets, i.e., network patterns, which appear in the
literature. The experiments demonstrate that the methods can scale
to realistic size networks containing 500 nodes and 1200 edges.

Section 2 describes by example the BGP protocol, and the BGP
convergence problem including Metarouting. Section 3 provides
a general overview of the verification flow proposed in this pa-
per. Section 4 describes how SMT solvers can be used for BGP
verification, while Section 5 specifies the sound criterion used for
model-checking network gadgets. The proposed criterion is en-
coded in Maude enabling optimization as described in Section 6.
Section 7 validates the proposed verification flow with several ex-
perimental results. Finally, sections 8 and 9 conclude by discussing
related and future work.

Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

10 20 120 210
120 9 210 10 20

a. Agree Gadget b. Disagree Gadget
Figure 1: Example gadgets to showcase convergence and di-
vergence in BGP

2 Border Gateway Protocol

2.1 BGP By Example

The Border Gateway Protocol (BGP) is a standardized exterior gate-
way protocol used for exchanging routing and reachability infor-
mation between autonomous systems (ASes) on the Internet [10].
BGP is categorized as a path-vector routing protocol [6], and it
determines routing decisions based on path attributes, network
policies, or rule sets configured by network administrators.

We illustrate BGP using the network gadgets shown in Figure 1,
while the exact algorithm is described in detail in [10]. These gad-
gets, called Agree Gadget and Disagree Gadget, respectively demon-
strate cases where BGP converges and where it may fail to do so.

Each node of a gadget is an AS. Each of these nodes have their
own policy for determining a preference on the paths for routing.
This policy is represented as an ordered list of paths in the figure
(written top to bottom next to the node that contains the policy).
A path p that appears before a path g in such a list is preferred
over q in the corresponding policy. The distinction between Agree
Gadget and Disagree Gadget is that the former prefers to route
paths directly to 0, while the latter prefers to route paths through
a neighbor before reaching 0. A key objective of BGP is to deter-
mine the best routing paths with respect to the ASes’s preference
relations.

BGP is run asynchronously among all nodes in a gadget to com-
pute a satisfying path for each node. Each node receives paths from
the nodes it is directly connected to that allows it to learn valid
routes to a destination. Nodes will process these paths, and for each
path will determine a selected best path from all of its known valid
routes. The selected path is stored in a Routing Information Base
(RIB) for each node. When the node has no current valid path to a
destination we denote this with a special path L.

For every neighbor a node has, it stores the most recent path
received from that neighbor in what is known as Routing Informa-
tion Base - Inbound (RIB-IN). Each node also keeps a FIFO queue
for each of its neighbors, these queues contain the paths received
from that neighbor but haven’t been processed by the node yet.
When a node processes a path to a destination, it checks whether
its policy prefers a valid path received from a neighbor over the
current path stored in its RIB for that destination. If so, the node
updates its RIB with the new path and broadcasts this updated
path to its neighbors.

In some cases, a node may later receive a different path from
the same neighbor that had previously sent the selected path RIB.
In this case, the path in the RIB is no longer a valid route. A new

On the Automated Verification of BGP Convergence

Node 1
Node 0 | Node 2
RIB-IN 1 L 1 1

QUEUE | [(1,0) 1 (2, 0)] U

| RIB-IN | (10) L 1 i

Step

—_

QUEUE i i (2. 0] | [21,0)]
5 RIB-IN (1,0) L (2,0) L
QUEUE { [(1,2,0)] i (2, 1,0)]

Table 1: Initial BGP Steps For Agree Gadget and Disagree
Gadget

one must be selected from its known paths stored in the RIB-IN. If
there are no valid paths that can be selected from a node’s RIB-IN,
the special path L is announced to its neighbors instead.

To showcase scenarios when BGP can find a solution and con-
verge, as well as, when BGP might oscillate forever and diverge
resulting in no solution, we explore an execution of BGP on Agree
Gadget and Disagree Gadget. For both gadgets, assume that BGP is
used to determine the best paths to node 0. Due to the two gadgets
only differing in path preferences, the first few steps taken when
executing BGP will essentially be the same. Paths will be written in
the form (ny, ny, ..., n) for nodes ny, ny, ..., n; and k € N. Queues
will be written in the form [p1, p2, .. ., px] for paths p1, pa, ..., p;
and/ € N.

We show those steps here running it on both gadgets in parallel
and will discuss the gadgets individually when their execution
would begin to differ. The results of each step of BGP is shown
in the tables 1, 2, and 3. We show for nodes 1 and 2 the currently
stored values of the RIB-IN and queue for each of their neighbors.
The RIB for each node is designated by the RIB-IN value that

is when applicable. Initially, in step 0, node 0 will have
already advertised to its neighboring nodes 1 and 2 the unit path

(0). The corresponding paths, (1,0) and (2,0) are stored at the
queues for node 1 and node 2 respectively. Next, both of these
nodes can process the path. In step 1, node 1 will process path (1, 0)
and then in step 2, node 2 will process path (2,0). At both these
steps, the RIB-IN entries at the node are L before any processing
is done. Thus, when each node processes its path in the queue, it
will store this in its RIB-IN and then select that path as its RIB
and announce this path to its neighbor. From step 3 and on we
consider two different cases for Agree Gadget and Disagree Gadget
respectively.

Agree Gadget consistently converges to a solution, regardless of
the execution order in BGP. A straightforward example of its con-
vergence can be demonstrated by continuing from the previously
described steps. Let both nodes 1 and 2 process the single path in
each of their non-empty queues in step 3 and in step 4 in sequence.
Each queue contains a path that routes to a neighbor before finally
reaching node 0. However, as discussed earlier, both nodes have a
policy to prefer routes directly to 0. Since both nodes already have
such a path selected as their RIB, when they process the path from
their queues, they will store the path in the RIB-IN, but no new
RIB will be selected, resulting in no new paths being announced
from either node. All the queues are now exhausted, so BGP has

PPDP ’25, September 10-11, 2025, Rende, Italy

St Node 1 Node 2
ep Node 0 | Node 2 | Node 0 | Node 1
: RIB-IN (1,0) L (2,0) L
QUEUE [l il { [(2,1,0)]
4 RIB-IN (1,0) 1 (2,0) 1
QUEUE [l 1] (] {
Table 2: BGP Steps for Agree Gadget
Ste Node 1 Node 2
P Node 0 Node 2 Node 0 Node 1
5 | RIB-IN | (10) ‘ @, 2,0) ‘ ‘ (2,0) ‘ L
QUEUE il 1l ([(2,1,0)(2,1,2,0)]
4 | RIBIN | (10) (1,2,0) (2,0) (2, 1,0)
QUEUE i [(1,2,1,0)] ([(2,1,2,0)]
5 RIB-IN (1,0) (1,2,1,0) (2,0) (2,1,0)
QUEUE [l (l [[(2,1,2,0);(2,1,0)]
¢ | RIBIN | [(LO)| | (1.2,1,0) | |(20) (2 1,2,0)
QUEUE (1 [(1,2,0)] ([(2 1, 0)]

Table 3: BGP steps for Disagree Gadget

terminated for Agree Gadget, giving the solution (1, 0) as the RIB
for node 1 and (2, 0) as the RIB for node 2.

In general, a gadget may converge for some ordering of execu-
tions for BGP and diverge for others. For example, Disagree Gadget
is not guaranteed to converge and we can display an example of
its divergence. We again continue from the previously discussed
common steps and start at step 3. Let both nodes 1 and 2 process
the single path in each of their non-empty queues in step 3 and in
step 4 in sequence. This time, when each node processes the path
in their queue and stores it in their RIB-IN, they will determine
that this new path is more preferred by its policy, selecting it as its
current RIB and sending it to its neighbor. At step 5 both nodes
again only have a single path in any of its queues. Let both nodes 1
and 2 process the single path in each of their non-empty queues in
step 5 and in step 6 in sequence. These paths replace the RIB-IN
entry that is selected as the node’s RIB but are not allowed by the
policy, so each node will now need to fallback to its previous RIB
that routed directly through node 0, and announce this path to its
neighbors. The RIB, RIB-IN, and queues in step 6 are identical to
those in step 2. It’s clear to see that steps 3 to 6 can be repeated
after step 6 indefinitely, resulting in BGP never terminating and
thus diverging.

2.2 Metarouting

Metarouting [7, 12] showcases the use of Routing Algebras to de-
sign and represent routing protocols like BGP. The algebra can be
written as a tuple (3, W, <, L, ¢, &, f) [7, 12],

3 is a set of signatures containing the paths in the network;
W is a set of weights used to order the elements of ;

< is a total order on W;

[]
[]
[]
e L is a set of labels for the nodes in the network;

PPDP ’25, September 10-11, 2025, Rende, Italy

Network SMT Yes BGP
Instance — Solver Converges
Encoding

No

Conflicting

Divergenceq | Maude Network Links

Witnesss

Figure 2: Verification Flow for BGP Verification

e ¢ € X is the special signature representing paths not allowed
by the network’s policy;

e @ is a binary operator that creates a new signature from
an input of a label and a signature by prepending the node
corresponding to the label to the path corresponding to the
signature;

e f isa function that maps elements from X to elements in W.

One of the benefits of this representation is that it is sufficient
to show that if a Routing Algebra is monotonic, VI € L, Va € ¥ :
f(a) = f(I ® @), then the corresponding network will converge.
We use < whena < banda # b.

We use Agree Gadget and Disagree Gadget from Figure 1 to
provide examples for a routing algebra. As noted previously, the
policy of Agree Gadget prefers to traverse directly to the destination
while Disagree Gadget prefers to traverse using a neighbor before
reaching the destination, otherwise the gadgets are identical. When
defining a routing algebra we can use the same symbols and defini-
tions for both gadgets except when defining the function f. We use
the notation f4 for Agree Gadget and fp for Disagree Gadget, oth-
erwise the other symbols will be shared between the two. We have
that W = {1,2}, L = {0,1,2}, = = {(1,0), (1,2,0), (2,0), (2,1,0)}.
For the functions f4 and fp, we define them such that:

fa((1,0) =1 fp((1,0) =2
fA((L 2’ 0)) =2 fD((l, 2, 0)) =1 (1)
fa((2,0)) =1 fp((2,0)) =2

fA((z’ 1> 0)) = 2 fD((z, 1, 0)) = 1

Using these definitions, it is straightforward to confirm the mono-
tonicity property for the algebra, or provide a counter example. For
Agree Gadget it is clear that 1 = f4((1,0)) < f4((2,1,0)) = 2 and
1=fa((2,0)) < fa((1,2,0)) = 2. Hence, the algebra is monotonic
and Agree Gadget converges. On the other hand, for the algebra
corresponding for Disagree Gadget to be monotonic we need the
following to hold 2 = fp((1,0)) < fp((2,1,0)) = 1, implying that
2 < 1, which is clearly false. Hence, we cannot make the same
statement about convergence for Disagree Gadget.

THEOREM 2.1. [7, 12] For a network gadget N, if a Routing Algebra
corresponding to N is monotonic then BGP always converges for N.

3 Verification Workflow

Figure 2 shows the main steps and tools proposed for the BGP
verification. The key insight is to combine (1) SMT solvers to auto-
matically check for BGP convergence and (2) the Maude rewriting
tool to enable the generation of a witness trace of BGP divergence.
The witness trace can then be used by engineers to correct network
configurations, e.g., path preference policies.

Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

The main challenge of producing such a witness is the great
size of networks which render model-checkers impractical. The
solution uses SMT solver’s capability of producing unsat cores to
help pinpoint which part of the network might be contributing to
BGP divergence, called the conflicting network links. This informa-
tion is then used to enhance model-checking performance making
verification feasible for larger networks.

The main steps of the verification flow are as follows and are
made precise in the subsequent sections:

(1) BGP Network Instance: The input of the verification flow
is the encoding of the network instance in SMT. The en-
coding specifies the network topology and path preference
policies. This encoding is used by both the SMT solver and
Maude in subsequent steps.

(2) SMT Solver: From the encoding of the network instance, an
SMT problem is generated specifying the BGP convergence
criterion specified by Metarouting [7, 12]. The satisfiability
of this problem implies that BGP convergence is always
guaranteed (Section 4).

(3) Conflicting Network Links Extraction: If the SMT prob-
lem for BGP convergence is not satisfiable, then the second
part of the flow starts with the objective of producing a wit-
ness for divergence. In particular, the unsat core produced
by the SMT solver contains the network links that may con-
tribute to the divergence.

(4) Maude Model-Checking: The model-checking problem
(Section 6) consists of proposed sound criterion for diver-
gence (Section 5). It takes as inputs the conflicting network
links and returns a witness of BGP divergence. Since the
method is sound, but not shown to be complete, computation
may not terminate.

4 Automating BGP Convergence Check with
SMT

4.1 Computing a Monotonic Global Ranking

The metarouting work described previously shows that if a Rout-
ing Algebra is monotonic, then the corresponding network will
converge (Theorem 2.1). Automating this check has been an open
problem for which we address in this section. The key insight is
instead of proving monotonicity, we check whether there is a global
ranking among the paths in the network such that preserves the
local preferences of paths and is monotonic.

Definition 4.1. A global ranking of paths in a network is a total
ordering among the paths such that if a node prefers path p over
path g then path p has a higher rank than path q. A global ranking
is monotonic if p = n @ q then path p has a higher rank than path gq.

LEMMA 4.2. A routing algebra is monotonic if and only if there
exists a monotonic global ranking.

Proor. The backward direction is immediate, as if there is a
global rank that is monotonic, then the algebra is also monotonic.
For the forward direction, assume that a Routing Algebra is mono-
tonic. Then we can obtain a global order by using the total order
obtained by the topological sorting of the partial order of in the
routing algebra that gives us the monotonic global ranking. O

On the Automated Verification of BGP Convergence

We utilize an SMT solver, cvce5 [1], to find a global ranking and
determine if a network will converge. cvc5 supports the defining of
custom datatypes and the theory of sequences. We create a custom
datatype consisting of the nodes in a given gadget. This should
allow the solver to more effectively search for a solution as for
any given symbol of the custom datatype, there are only finitely
many choices. Paths are represented as sequences of this custom
datatype. The sequence theory allows us to reason about sequences
and various built in operations on sequences, e.g., concatenation,
length, subsequence, etc.

First, we define two helper functions, H and T, to be used by the
SMT Solver:

e H takes as input a path p and returns the first node in that
path

o T takes as input a path p and returns that path without its
first node H(p)

Theories in SMT require that all functions are total, so the SMT
solver is free to assign any value to H or T for inputs that these
functions are not properly defined for, e.g., the empty path. Though,
this shouldn’t present any issues in our implementation.

We also define the function S that takes a path and returns an
integer to represent the local policy at each node. Let p and g be
paths that start from the same node n, i.e., H(p) = n = H(q).

If p # q then S(p) # S(q);

If S(p) > S(q) then node n prefers path p to path g;

If p is the empty path then S(p) = 0;

If p is allowed by the policy at node n then S(p) > 0;

If p is not allowed by the policy at node n then S(p) < 0.

In our examples, each policy at a node is represented as an
ordered list of allowed paths. We assign the last element in the list
the integer 1 and iterate backwards assigning increasingly higher
integers for each subsequent member iterated through. Any non
empty path not seen at one of the policies is mapped to —1.

Lastly, we define the function R that takes a path and returns
a natural number to represent the global ranking. Let p and g be
paths.

o If p # g then R(p) # R(q);

o The ranking is in ascending order of the naturals such that
if R(p) < R(q) then p is ranked higher than g;

o If p is the empty path then R(p) = 0;

e The ranking must preserve the ordering of the local pref-
erences for each node’s policies, i.e., if H(p) = H(q) and
S(p) > S(q) then R(p) < R(q);

o The ranking must also be monotonic, i.e., if T(p) = g then
R(p) > R(q).

Let P be all the paths allowed by a node in the network. To define
R in SMT we use the following formulas: Vp,q € P

1) p#q = R(p) #R(q)

(2) p# qAH(p) =H(g) AS(p) < S(g) = R(p) > R(q)

() T(p) =q = R(p) > R(q)

Formulas consisting of quantifiers like V can be extremely diffi-
cult for SMT solvers to deal with. To avoid this problem, we instead
iterate through all the paths in P and construct corresponding for-
mulas for every pair p, g € P to send to the solver. (1) requires that
distinct paths are given distinct global rankings, (2) requires that

PPDP ’25, September 10-11, 2025, Rende, Italy

local preferences are preserved, and (3) requires monotonicity. If
the solver returns satisfiable (SAT), then it was able to find a global
ranking.

THEOREM 4.3. The SMT encoding of a gadget, described above, is
satisfiable if and only if there is a monotonic routing algebra for the
corresponding gadget.

PRrROOF. Suppose that the SMT solver returns SAT after given the
formulas described above. Then a monotonic global ranking can
be extracted from R directly as the preferences of the local policies
will be preserved from the constraints correspond to (2) and the
formulas corresponding to (3) force the ranking to be monotonic.
It follows from Lemma 4.2, the existence of the routing algebra.

Now, suppose that such a monotonic global ranking exists. Then,
there must be an ordering of the paths that preserves the preferences
of the local policies and is monotonic. One can construct from this
ordering a model satisfying all the formulas of the SMT encoding
by using the the order for R and the local preferences for S. O

The result of SAT to compute a global ranking implies that
the network converges for BGP. If the solver returns unsatisfiable
(UNSAT), then no such global ranking exists. The monotonicity
condition is sufficient but not necessary, so it cannot be determined
whether the gadget converges or diverges given an UNSAT result
alone from the solver. To address this limitation we take advantage
of the solver’s unsat core and use this in a heuristic to attempt to
find an example of divergence to both confirm the gadget does in-
deed diverge and to reveal the troublesome properties of the gadget
that lead to the divergence so that a user may make appropriate
changes to the gadget to ensure BGP converges for their network.

4.2 Extracting Links of Interest From an
Unsatisfiable Core

To achieve this we use what is known as an UNSAT core. An UNSAT
core is a subset of the input constraints that would lead to an UNSAT
result. In particular, we query in search for a minimal UNSAT core
in cvc5, a subset of the constraints UC that the solver produces
UNSAT for, but any strict subset of UC produces SAT. This core may
not be the minimum possible size but it can have drastically fewer
elements than the original input set. Any computed UNSAT core
would reveal a conflict in propositions that make it impossible to
satisfy the monotonicity condition to correctly define R. Since we
form each constraint from a concrete pair of paths p, g, rather than
using any quantifiers, when examining the UNSAT core the set of
paths that fail to preserve monotonicity are explicitly displayed.
For each path p; = (ny,ng,...,ng) that appears in a constraint
from a minimal UNSAT core such that k > 2, we compute /; as the
link from node n; to node ny. All such links, J;, are passed to our
implementation using Maude as described in the following section
6 to aid in locating a sequence of states from executing BGP that
diverges for a given gadget.

To provide an example of what an unsat core might look like for
a gadget that diverges, consider Naughty Gadget as shown in Figure
3. It is not difficult to show that this gadget can diverge, oscillating
between processing paths from node 3 and node 4. Building the
corresponding boolean constraints for this gadget as described
above and sending it to the SMT solver gives an UNSAT result.

% Q—® %
o

3420 430

30 420

Figure 3: Naughty Gadget

Further, taking a look at the unsat core provided by the solver will
look like the following:

e Score Constraints
- 8((3,0)=1
- 8((3,4,2,0) =2
- 85((4,2,0) =1
- 85((4,3,0) =2
e Local Pref Constraints
- H((3,0)) =H((3,4.2,0)) AS((3,0)) <S((3,4,2,0))
= R((3,0)) > R((3,4,2,0))
- H(4,2,0)) =H((4,3,0)) A S(4,2,0)) < S((4,3,0))
= R((4,2,0)) > R((4,3,0))
e Monotonic Constraints
- T((3,4,2,0)) = (4,2,0)
= R((3,42,0)) > R((42,0)
- T(4,3,0)) =(3,0)
= R((4,3,0)) > R((3,0))

It is apparent that each constraint listed containing an implica-
tion symbol has its antecedent as evaluating to true, so we focus
on just the conclusion when discussing these propositions. A chain
of inequalities can be created such that:

R((3,0)) > R((3,4,2,0))
> R((4,2,0))
> R((4,3,0))
> R((3,0))

This would require that R(3,0) > R(3,0), but this is a contradic-
tion. Hence, no ranking can be found satisfying the monotonicity
conditions. This is shown using only 8 of the 217 total constraints
originally given to the solver. Moreover, these paths found in the
unsat core only begin from nodes 3 and 4 and only directly route
through nodes 2, 3, 4 from its starting node, excluding the common
destination 0. We compute the links: node 3 to node 4, node 4 to
node 2, and node 4 to node 3 as the set of links to send to Maude
as a parameter to help in the search for an oscillating sequence
of states that would cause divergence, using only 3 of the 11 total
links in Naughty Gadget.

5 Sound Criterion of BGP Divergence

Following the verification flow described in Section 3, if the SMT
solver does not produce SAT result for convergence, the task is

Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

to provide a counterexample for engineers to use for debugging
purposes if possible.

In principle, model-checkers can determine counterexamples for
liveness properties such as the BGP convergence property, but these
checks are notoriously difficult. We follow instead the solution of
reducing the checking of a liveness property to the checking of a
safety property [2]. This reduction enables the model-checker to
make more effective use of invariants thus considerably improving
performance.

This section introduces such a safety property. Intuitively, we
observe that divergence often manifests as cycles in the flow of
messages across links, where specific paths are continuously pro-
duced and consumed in a repeating pattern without ever leading
to stabilization. This motivates us to study the link-level message
dynamics of BGP execution and to define divergence in terms of
patterns in message production and consumption.

The following subsections formalize the BGP divergence cri-
terion. Section 5.1 reviews the trace semantics of BGP networks
based on the Simple Path Vector Protocol introduced by Griffin
et al. [6]. Section 5.2 introduces the divergence property based on
the messages that are produced and consumed by network links.
Section 5.3 illustrates the criterion with an example.

5.1 Formal Network Setup and Execution Model

We begin by formalizing the BGP network abstraction. A BGP
network instance is represented by a gadget G = (N, peer, P, Sp),
where N is the finite set of nodes, peer maps each node to its peers,
P is the local preference table assigning rankings to paths, and
So = (Rib, Rib-In, Q) is the initial state of the system. Each state,
including the initial state So, can be viewed as the gathering of the
states maintained by each node N € node, i.e.,

e Rib(N): the best path currently selected by N;

e Rib-In(N): a mapping from peers to their most recent path
advertisements;

e Q(N < N’): aFIFO queue of messages pending from neigh-
bor N’ to N, per neighbor N’.

Execution Model Abstraction. The semantics of BGP route selec-
tion and message propagation follow the Simple Path Vector Proto-
col (SPVP) model introduced by Griffin et al. [6]. SPVP simplifies
BGP to a message-passing system where each node asynchronously
processes received paths, applies local preferences, and may update
its selection and generate new messages.

The behavior of the BGP network is modeled via a scheduling
algorithm A, which selects, at each step, a valid transition t =
(Nr & N, P), representing node N, processing path P received
from neighbor N;. A transition is said to be valid for a state if P is
the head of the corresponding queue in that state. The execution
of a transition results in the update of the the system state via the
SPVP transition function.

Built on the above specification, an execution trace 7 is a se-
quence of states Sy, S1, . . ., Sp, where each transition corresponds
to a valid transition applied according to an algorithm A. Each
trace implicitly induces a sequence of message productions and
consumptions along each directed link.

On the Automated Verification of BGP Convergence

5.2 BGP Divergence Criterion

To capture divergence in terms of observable system behavior, we
introduce the notions of message production and consumption on
each link.

Definition 5.1. For each directed link N < N’ and a trace 7 =
(S4, 51, .. .,SB), we denote,

. PI?IN;IB\I': the list of paths produced by N’ and sent to N in
the segment S4 ~» Sp of the trace z;

. Cf;;%,: the list of paths consumed by N from N’ in the
segment Sy ~» Sp of the trace 7.

These sequences are computed recursively over the trace, respect-
ing the FIFO semantics of BGP message queues. The divergence of
a link can further be indicated by a cyclic pattern in the production
sequence that constantly replenishes the queue, thereby preventing
stabilization.

We now define the central notion of a divergence point, which
characterizes a trace segment that establishes recurring behavior
indicative of global divergence.

Definition 5.2. A state Sp is said to be a divergence point of a
prior state Sy if the following requirements are met:

(1) The control plane state, i.e., the selected paths (Rib) and the

received advertisements (Rib-In), are same for both states;

(2) There exists a trace 7 = (S4, S1, . .., Sg) such that for every

link N & N’ that is active in the trace, the message produc-

tion sequence Pﬁ“;ﬁ],, consumption sequence Cﬁ:;ﬁ],, and
the S4 message queue Q4 (N < N’) exhibit the following
relationship,

e We can find three natural numbers kp, ke, kq e N,and a
basic recurrent path pattern R = Ry, + R, where the prefix
Ry and the suffix Rs together form the loop body R, such
that,

o the production sequence can be written as Rs + Rke + Rp,

e the consumption sequence is some repetition of R, i.e.,
Rke,

o the original message queue is in the form of Rk + Rp, and

kp +1 2 k¢ ensures that the queue never drains.

This condition ensures that the queue state is self-sustaining, i.e.,
the system can re-enter the same queue configuration at Sg after
consuming and producing such configuration of paths, enabling
further repetition. This is formalized by the following statements.

THEOREM 5.3. If a trace segment Sy ~» Sp satisfies the divergence
point conditions, then there must exist a further segment Sg ~> Sc
that also ends in a divergence point Sc with respect to Sg.

This means that any trace segment satisfying the divergence
point conditions can be extended to an infinite trace.

COROLLARY 5.4. Ifa BGP instance has a trace with a trace segment
Sa ~ Sp satisfying the divergence point conditions, then BGP does
not always converge for the given BGP instance.

5.3 Example

We illustrate the divergence criterion using the Disagree Gadget
described in Section 2. The topology and local preferences are
shown in Figure 1.

PPDP ’25, September 10-11, 2025, Rende, Italy

Starting from the initial state Sp, the following trace can be
constructed,

S N1 &Ny Ny &Ny N =N, Ny&=N;
0 1 2 3
(No) (No) (N2,No) (N1,Np)
N1 <N, N, =N, N1 &N, Ny &Ny
5 6 7 8>
(N2,N1,Np) (N1,N2,Np) (N2,Np) (N1,No)

N, <N
where each transition t = (N, < Lg, P) is denoted as S —P——> s,

where N, processes a path P (the front of the queue) received
from N;. We now show that the subtrace S4 ~ Sg demonstrates a
violation in our proposed safety property for divergence, as Sg is a
divergence point with respect to S4.

Control Plane. First, we observe that the control plane state re-
mains unchanged, thus satisfying condition (1) of Definition 5.2:

S4Rib(Ny) = Ss.Rib(N;) = (N1, Nz, No),
S4.Rib(Ny) = Ss.Rib(Ny) = (Np, N1, Np),
S4.Rib-In(Nj) = Sg.Rib-In(N7) = {Np : (No), Nz : (N2, No)},
S4.Rib-In(N3) = Sg.Rib-In(Nz) = {No : (No), N1 : (N1, No)}.

Message Dynamics. Next, we examine the message dynamics on
the two active links,

e For N1 & No,

Card, = [(N2, N1, No), (N2, No)]

PaEy, = [(N2, No), (N2, N1, No)]

$4.Q(N1 & N2) = [(N2, N1, No)]
e For N, &< Nj,

Can n, = [(N1, N2, No), (N1, No)]

P?\]?_EM = [(N1, Np), (N1, N2, Np)|

S4.Q(N2 & N1) = [(N1, N2, Np)]

We now demonstrate that the divergence point condition holds
for both links. Consider the following lasso recurring structure,

o for N & Na, Ry = [(N2, N1, No)]. Rs = [(N2, No)]. kg =

kp = O, kC = 1,
e for N2 & Ni, Ry = [(N1, N2, Ng)I.Rs = [(N1,No)l.kg =
kp =0k = 1.

Thus, the divergence point condition is satisfied: the message
queue maintains a self-replenishing pattern, and the system can
re-enter the same configuration after each cycle, enabling indefinite
repetition.

This demonstrates that BGP fails to converge in this instance,
as the trace segment Sy ~» Sg satisfies the safety-based divergence
condition.

PPDP ’25, September 10-11, 2025, Rende, Italy

Further Remarks. In order to automate the search for a diverging
point one needs to determine the candidate trace from Sy ~ Sp.
This is in principle not feasible when verifying large networks with
hundreds of nodes. A key insight, as we describe in more detail in
Section 6, is to provide as input the set of links that are activate in
the candidate trace. This set of candidates, as illustrated in Figure 2,
can be determined from the unsat core obtained from the SMT
solver. Given this input of candidate links, verification is feasible
as the model-checker can use this fact to reduce state-space.

120 e 2%8

0 (X
o
3420 420

30 430

Figure 4: Bad Gadget

The proposed criterion is sound, but its completeness is still open
and left to future work. Indeed the bad gadget shown in Figure 4
is an example for which the criterion does not seem to work. In
particular, the model-checker fails to converge, that is, it does not
terminate. It is not clear whether it is because for this gadget the
problem is indeed hard or whether the criterion is incomplete. We
suspect the latter.

6 Formalizing Criteria in Rewriting Logic
Building on the divergence criterion proposed in the previous sec-
tion, this section describes how we formalize and implement the
criterion in rewriting logic using the Maude system. Our goal is to
model BGP network behavior faithfully and to enable automated
search for divergence traces that satisfy our safety-based condition.

We organize the presentation into three parts: Section 6.1 de-
scribes the formal system model in Maude, Section 6.2 presents the
rewrite rules for protocol execution, and Section 6.3 discusses how
the search space is reduced using the SMT-generated unsat core
and other rewriting heuristics.

6.1 System Modeling

We model a BGP network as a set of nodes (i.e., autonomous sys-
tems) and a booking object for our proposed divergence criterion.

Nodes: Each node is represented as an object in Maude, as illus-
trates the following term:

< N1 : NodeClass | id : nid(1),
rib : nid(1) nid(2) nid(@),
rib-in : (
(nid(1) <= nid(@)) !'-> nid(Q),
(nid(1) <= nid(2)) !-> nid(2) nid(0)
),
permitted : (

Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

(nid(2) nid(@)) :: nid(0@)
)7
neighbours : nid(2),
queue : (

(nid(1) <= nid(2)) !-> nid(2) nid(1) nid(e)) >,

A node term encapsulates its local state, including its identifier
(id), selected path (rib), received advertisements (rib-in), pref-
erences (i.e. policies) (permitted), and pending message queues
(queue). For example, in the instance above for a node nid(1),
the path selected to node nid(@) passes through nodes nid(2);
(nid(1) <= nid(2)) !'-> (nid(2) nid(@)) denotes that node
nid(2) advertised to node nid(1) its best path to node nid(®) as
passing through node nid(2); and (nid(2) nid(@)) :: nid(9@)
indicates that the path going through nid(2) to nid(@) is more
preferable than directly routing to nid(@), and these are the only
two permitted paths; finally, the queue stores the advertisements
to be processed by the node.

Bookkeeping object: In addition to the network nodes, the system
also includes a bookkeeping object for our proposed divergence
criterion. This object maintains trace information necessary for
evaluating the proposed divergence point condition.

< DPC : DPClass | sz : 2,
consume : (
(nid(1) <= nid(2)) !'-> nid(2) nid(1) nid(@)
++ (nid(2) <= nid(1)) !'-> nid(1) nid(2) nid(@)
),
produce : (
nid(1) !-> nid(1) nid(@)
++ nid(2) !'-> nid(2) nid(@)
),
init : (
(nid(2) <= nid(1)) !'-> nid(1) nid(2) nid(0),
(nid(1) <= nid(2)) !'-> nid(2) nid(1) nid(@)
),
all-rib : (
(nid(1) nid(2) nid(®) ; nid(2) nid(1) nid(@))
++ (nid(1) nid(@) ; nid(2) nid(1) nid(@))
),
all-rib-in : ((
(nid(1) <= nid(@)) !'-> nid(0),
(nid(2) <= nid(@)) !'-> nid(0),
(nid(1) <= nid(2)) !'-> nid(2) nid(Q),
(nid(2) <= nid(1)) !-> nid(1) nid(e)
)+t (
(nid(1) <= nid(@)) !'-> nid(0),
(nid(2) <= nid(@)) !'-> nid(0),
(nid(1) <= nid(2)) !-> nid(2) nid(1) nid(0),
(nid(2) <= nid(1)) !'-> nid(1) nid(@)
)
) >

The above term illustrates a concrete example of a divergence
point object. It maintains a history of size 2, which records the past
two link consumption (consume), path announcements (produce),
control plane information (all-rib, all-rib-in), and records

On the Automated Verification of BGP Convergence

the initial queue contents (init) two-step before the current state
accordingly.

Nodes and the bookkeeping structure are wrapped in a single
term to ensure full rewriting on the whole system.

sort BGP .
op {_} : Configuration -> BGP [ctor]

To signal successful detection of divergence during a search, we
introduce a special constant object:

op diverged : -> Configuration [ctor]

This object is inserted into the configuration when the diver-
gence point condition is met, terminating the search.

6.2 Rewrite Rules

Maude transitions are specified via rewrite rules, which model the
operational semantics of BGP node behavior as defined by the SPVP
model.

Rewrite Configuration. To achieve efficient bookkeeping and
searching, we introduce two rewrite configurations to be speci-
fied by the user before the search starts to narrow down and divide
the search space.

o sp-links: We categorize all message links in the system into
two types: sp-links and non-sp-links, where sp-links are links
that are involved in the trace segment between divergence
points, while non-sp-links are the remaining links. By speci-
fying sp-links, the system will search for states that oscillate
only between those links. This further eliminates the need
for storing history queue and control plane information of
non-sp-links, as well as supporting us to clear the history
when non-sp-links are touched, and can thus largely help cut
the state space.

o sp-recur-size: The exact number of steps involved in the os-
cillation proof; i.e., between two divergence points. By fixing
this number, the system no longer needs to save history for
longer than sp-recur-size steps, and will populate bookkeep-
ing state when exceeded.

Rule. The main rewrite rule takes the following form:

rl [process-queue] : {
C < A : NodeClass | id : N,
queue : ((N <= N') !-> Msg ::
< DPC : DPClass | ... >
}
=>
if dp-check(dpc: < DP :
then { diverged ... }
else {
nodes-update(...)
if (N <= N') in sp-links then
dp-update(updates: ..., sys: ...)
else
dp-clear(sys: ...)
fi

3
fi

Tail) ; 0, ... >

DPClass | ... >)

PPDP ’25, September 10-11, 2025, Rende, Italy

At each step, the rule will first check if the divergence criterion
is satisfied based on the bookkeeping term. If so, a divergence flag
will be inserted. Otherwise, as modeled in SPVP, a node processes
the first message in one of its incoming queues through pattern
matching, potentially updates its state, and produces new path
announcements to neighbors if needed. The bookkeeping object
is cleared whenever the rewritten link is not in the sp-links, and is
updated otherwise.

Rules are defined to preserve asynchrony: at each rewrite step, a
node processes the message from an arbitrary non-empty queue.
To enable verification, the rewrite engine can be asked to search
for a state where the divergence flag is inserted.

6.3 Search Space Reduction

While our rewriting logic framework enables precise modeling and
analysis of BGP convergence behavior, the state space for model
checking remains prohibitively large in general. This agrees with
observations in the literature [17]. This section introduces two key
optimizations that significantly reduce the search space and make
verification feasible even for larger networks.

We identify two sources of combinatorial explosion:

e Rewrite Configuration Combinatorics. As introduced in
Section 6.2, users must specify a set of sp-links — the subset
of network links suspected of participating in divergence.
However, for a network with n links, the number of such
subsets is exponential in size. Exhaustively enumerating
these configurations is computationally infeasible.

e Message Interleaving Explosion. BGP’s asynchronous
nature means that messages can be processed in arbitrarily
different orders. For large networks, this leads to a vast num-
ber of rewrite interleavings, even when only a small portion
of the network contributes to divergence.

We address these issues using two complementary techniques.

Extract sp-links from SMT unsat core. A key insight from Section 4
is that the SMT solver’s unsat core pinpoints the specific constraints
responsible for the failure of guaranteeing BGP convergence. These
constraints correspond to path preference conflicts that arise from
particular network links. Therefore, links appearing in the unsat
core can be useful to be specified as the sp-links for the system to
search for divergence. We thus use the SMT-derived unsat core to
initialize the set of sp-1inks automatically. This avoids the need for
manual or exhaustive enumeration and sharply reduces the search
space to only those parts of the network that may be involved in
the potential oscillation.

Atomic Rewrite for Non-sp-links. Our second optimization is
based on the observation that links outside of sp-links usually do not
participate in the divergence pattern. Therefore, the specific order
in which messages on non-sp-links are processed might not affect
the existence of a divergence trace, in which cases, interleavings
among them are semantically irrelevant.

To exploit this, we introduce an atomic rewrite rule that pro-
cesses the head of all non-empty non-sp-links in a single step. This
reduces the interleaving among non-critical parts of the network
and allows the rewrite engine to focus on meaningful variations in
the behavior of sp-links.

PPDP ’25, September 10-11, 2025, Rende, Italy

crl [process-atomic] : { Confl } => { Conf2 }
if Nodes2 := nodes-update-all(
sys: Conf1,
links: non-empty-non-sp-links)
/\ DPC2 := dp-clear(sys: Nodes2)
/\ Conf2 := DPC2 Nodes2 .

where nodes-update-all computes all the nodes in the configura-
tion Conf1 with non-sp-links and non-empty queues; and dp-clear
executes the BGP algorithm, i.e., consuming the head of the nodes’s
queues, and adding to queues messages produced by link sources.
It must be pointed out that these heuristics are sound as no new
behaviors are introduced by using atomic steps for non-sp-links.
They, however, may lead to the tool not identifying a witnessing
counterexample with the divergence. This happens, for example,
with the bad gadget described at the end of Section 5.2 for which our
formalization is not capable of finding a suitable counterexample.

7 Evaluation

BO—OB BB Q—@ %

Q.'I 10 20
bl el
" Gl JOSSOF ©

a. Good Gadget b. Naughty Gadget c. Disagree Gadget

Figure 5: Base Gadgets

All experiments were run on a Windows 11 Home 24H2 machine,
with an Intel Core 17-14700KF CPU, consisting of 64 GB of RAM,
with Python 3.12.7 using Maude python bindings 1.4.0 [11] and
cve5 1.2.0. We run experiments on Good Gadget, Naughty Gadget,
Disagree Gadget as seen in Figure 5. Naughty Gadget and Disagree
Gadget have been discussed in previous sections, both are known
to be able to diverge. Good Gadget instead is known to have a
corresponding routing algebra that is monotonic and therefore
always converges. We also run experiments by building larger
gadgets using combinations of the three previously mentioned
gadgets as base gadgets. When we create a combination in these
experiments, we use gadgets where all but one are equivalent to
the Good Gadget and the remaining is the gadget denoted in the
first column. The total number of base gadgets used to create the
gadget used for each experiment is denoted size and is reported in
the second column. Thus, size — 1 gadgets are Good Gadget and the
remaining gadget is the one recorded in the first column. The third
column shows a tuple consisting of the number of nodes (#N), the
number of links (#L), and the number of paths (#P) respectively in
the corresponding gadget. The fourth column shows the amount of
time in seconds it took to create the corresponding formulas for the
SMT solver and then running the solver to check for convergence of
the gadget, including the time it takes to compute the unsat core if
necessary. The fifth and last column displays the amount of time in
seconds it took to run the Maude implementation to find a trace that
would oscillate resulting in the divergence. We provide experiments
for when both SMT and Maude (or just SMT when the gadget
converges) are able to terminate with a solution within an hour. If
the gadget converges, there’s no oscillating trace that can be found

Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

and we instead report N/A since we don’t run the Maude program
for these gadgets. There are three tables corresponding to the three
types of gadgets we used, the base gadgets, rooted combination
gadgets, and nested combination gadgets. The two combinations are
constructed in a way such that the combined gadget diverges if and
only if at least one of of the gadgets used to create it diverges. This
is shown as we discuss how these combined gadgets are created.

Gadget | Size | (#N, #L, #P) | SMT (s) | Maude (s)
Good 1 (5,11, 7) 0.026 N/A

Disagree 1 (5,11, 8) 0.028 0.369

Naughty | 1 (3,4, 4) 0.018 0.121

Table 4: Base Gadget Results

The first combination type we denote as a rooted combination.
We take n gadgets, g1, g2, ..., gn as input to construct a new gadget.
First, we create a new node O as the new common destination.
Then, we draw a link from each common destination Oy, for g; to
O. Finally, every existing path in each gadget is appended with the
new common destination O, and each Oy, is given a policy for path
preferences only consisting of (Og,, O).

For example, suppose we construct a rooted combination of Good
Gadget as g; and Disagree Gadget as g» as seen in Figure 6. Then
the path (1, 2,0) from Disagree Gadget becomes (2 :1,2:2,2:0,0)
by first tagging each node with the instance number 2, the index of
Disagree Gadget from the list of inputs, then appending the global
node 0.

It is clear that no two gadgets g;,g;j for i # j will have a path
that traverses nodes from both gadgets. This means that we can
essentially treat each gadget independently in the new combined
gadget for the purposes of determining if BGP will converge or
diverge. Hence, if some gadget g; diverges then the new combined
gadget will also diverge. Our machinery is able to handle gadgets
constructed using the rooted combination consisting of up to 500
nodes, 1200 links, and 800 paths.

Gadget | Size | (#N, #L, #P) | SMT (s) | Maude (s)
Good 2 (11, 24, 16) 0.122 N/A
Naughty | 2 (11, 24, 17) 0.113 1.39
Disagree 2 (9,17, 13) 0.068 0.238
Good 5 (26, 60, 40) 0.728 N/A
Naughty | 5 (26, 60, 41) 0.66 3585
Disagree 5 (24, 53, 37) 0.542 0.596
Good 10 (51, 120, 80) 3.074 N/A
Naughty 10 (51, 120, 81) 2.636 9.601
Disagree 10 (49, 113, 77) 2.352 1.794
Good 50 (251, 600, 400) 223.523 N/A
Naughty 50 (251, 600, 401) 68.336 209.484
Disagree 50 (249, 593, 397) 66.953 58.908
Good 100 | (501, 1200, 800) | 2655.43 N/A
Naughty | 100 | (501, 1200, 801) | 324.879 862.888
Disagree | 100 | (499, 1193,797) | 292.157 240.22

Table 5: Rooted Combination Results

On the Automated Verification of BGP Convergence

(1:1,1:3,1:0,0)
(1:1,1:0,0)

(1:2,1:1,1:0,0)
(1:2,1:0,0)

(1:4,1:3,1:0,0)
(1:4,1:2,1:0,0)

PPDP ’25, September 10-11, 2025, Rende, Italy

(2:1,2:2,2:0,0)
(2:1,2:0,0)

(2:2,2:1,2:0,0)
(2:2,2:0,0)

Figure 6: Rooted Combination Using Good and Disagree Gadgets

The other combination type we call a nested combination. This
combination takes two gadgets g, and g;, as inputs to construct
a new gadget g,p,. The first step of this type is to replace every
node in g, that is not its common destination Oy, with the nodes
and links (but not paths) of gadget g;. Oy, becomes the common
destination of the newly created nested combination g,;. Only the
nodes corresponding to the common destination in gy, Oy, , will
have a link that directly connects them to Oy,. We denote each
newly created node as A : B where A refers to a node from g, and
B refers to a node from g;,. Now, at each node A : B to determine
the policy for its path preference we compute the following: for
each path pg = (ug, uz, ..., um, Oy,) in the policy for node A from
ga, for each path pj, = (v1,02,...,04, Oy,) in the policy for node B
from g;,, we create the path:

Pa o pp = (U1, uz,...,um,Og,) o (01,02, ...,0n,0g,)
=(B:v1,...,B:0p,B: 0y, u2: Og,,....um : Og,, Og,)

An example using Disagree Gadget as g, and Good Gadget as gp,
to create a nested combination is shown in Figure 7. As an example
of generating the image of the paths of a gadget, the good gadget
path (1,3,0) becomes two paths by composing the image of the
disagree paths (1, 2,0) and (1, 0), namely (1: 0,2 : 0,0) and (1 : 0,0)
to the image (1:1,1:3,1:0) of (1,3,0). Thus we have:

(1:1,1:3,1:0)0(1:0,2:0,0)=(1:1,1:3,1:0,2:0,0)
and
(1:1,1:3,1:0)0(1:0,0) =(1:1,1:3,1:0,0)

To create larger nested combinations from more than two inputs
we chain together the constructions using intermediate gadgets
created as input for the next combination. For example if we want
to combine gadgets gq4, gp, ¢ in a nested combination we first com-
pute the nested combination g, using gadgets g, and gj, then we
compute the combination using g, and g, for the final combina-
tion.

The way these type of gadgets are constructed preserves the path
preferences of the original gadgets. If path p, was more preferred
than g, from gadget g4, then path p, * pj, is more preferred than
path g, *qp, for any paths py, g, from gadget g;,. A similar argument
can be made to show that path preferences are conserved for gadget
gp- Suppose that g;, diverges and we can find a trace that oscillates.
For any image of gj, in the nested gadget, this oscillating trace can

be translated to an oscillating trace involving only nodes of the
image gadget.

Now, suppose that g, diverges and we can find a trace that
oscillates. Then, consider only the nodes that were created from
Oy, - This will resemble the original g, and a similar trace can be
found, thus showing divergence. Hence, if g, or g, diverges then
gap diverges.

In our experiments we choose g, as the gadget named in column
one in the tables and all other gadgets used in the construction are
chosen as the Good Gadget. We are only able to handle gadgets
consisting of up to 100 nodes and 400 links, roughly a fifth of the
amount of nodes for root combination before reaching the time
limit of an hour. The number of paths in nested combinations grows
much faster than the number of paths in rooted combinations,
reaching up to 700 paths after two nested combinations on three
gadgets. This seems to cause the SMT solver to become a bottleneck
much faster, as the monotonicity constraints require us to iterate
over every pair of paths in the gadget, making it more difficult for
the solver to find a solution. The Maude implementation may find
a suitable trace within the hour time if given the proper parameters
as input, since the absolute number of paths does not impact the
performance nearly as much as the number of nodes and links do.

Gadget | Size | (#N, #L, #P) | SMT (s) | Maude (s)
Good 2 (21,72, 63) 4.86 N/A
Naughty 2 (21,72,71) 5.251 4.518
Disagree 2 (11, 34, 32) 0.889 0.25
Good 3 | (101, 384, 623) | 1744.585 N/A
Naughty 3 (101, 384, 687) | 420.453 114.87
Disagree 3 (51, 190, 312) 96.773 2.608

Table 6: Nested Combination Results

8 Related Work

We take inspiration from related work, in particular, the Metarout-
ing framework [7, 12] and existing Model-Checking approaches [15-
17]. The main difference, however, is our goal of providing auto-
mated checks, which are sound and scalable.

Metarouting [7, 12] provides a general mathematical framework
for determining whether a BGP network gadget converges. A key

PPDP ’25, September 10-11, 2025, Rende, Italy

(1:1,1:3,1:0,2:0,0) (1:2,1:1,1:0,2:0,0

)
(1:1,1:3,1:0,0) (1:2,1:1,1:0,0)
(1:1,1:0,2:0,0) (1:2,1:0,2:0,0)

(1:1,1:0,0) (1:2,1:0,0)

Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

(2:1,2:3,2:0,1:0,0) (2:2,2:1,2:0,1:0,0)

(2:1,2:3,2:0,0) (2:2,2:1,2:0,0)
(2:1,2:0,1:0,0) (2:2,2:0,1:0,0)
(2:1,2:0,0) (2:2,2:0,0)

(1:3,1:0,2:0,0) (1:4,1:3,1:0,2:0,0)
(1:3,1:0,0) (1:4,1:3,1:0,0)
(1:4,1:2,1:0,2:0,0)

(1:4,1:2,1:0,0)

(2:3,2:0,1:0,0) (2:4,2:3,2:0,1:0,0)
(2:3,2:0,0) (2:4,2:3,2:0,0)
(2:4,2:2,2:0,1:0,0)

(2:4,2:2,2:0,0)

Figure 7: Nested Combination Using Disagree and Good Gadgets

limitation of the original work is the lack of fully automated meth-
ods for checking for convergence. The recent paper by Daggit and
Griffin [4] has formalized the theoretical framework in Agda, which
provides a means for proving convergence of network gadgets in
a semi-automated fashion. The framework also enables the explo-
ration of different convergence conditions through mechanized
reasoning. We take a different approach by encoding the condi-
tions proposed as a SMT problem. This enables the fully automated
verification of network gadgets.

The second body of work uses model-checking approaches to
determine BGP convergence and also to determine witnesses for
divergence. Previous work [17] formalized the BGP algorithm and
the BGP problem as LTL liveness formulas in Promela. However,
the experiments demonstrate the complexity of the BGP conver-
gence problem as Promela was not able to determine divergence
of gadgets with less than 5 nodes. Our proposal is to reduce the
liveness problem to a safety problem as suggested in the litera-
ture [2]. Model-checkers typically perform better when proving
safety properties as one can exploit different types of reduction
techniques. This enabled our model-checking to verify networks
with hundreds of nodes.

Wang et al. [16] proposed another formalization in Maude. How-
ever, while the performance is adequate, it is not sound. In particular,
it can generate false counter examples. This seems to occur in gad-
gets for which BGP may sometimes converge, but sometimes also
diverge. This is because the definition of divergence is not precise
enough. We propose, on the other hand, a definition for determining
divergence that is sound and scalable.

Wang et al. [13, 14] have also proposed methods to improve
the scalability of model-checking. In [14], the authors exploit the
structure of network to reduce the verification problem. For ex-
ample, they identify sub-nets that are duplicated which can be
reduced to a single sub-net when checking for divergence. We take
an alternative approach by exploiting the unsat core of the SMT
solver checking the formalization of Metarouting conditions. In
[13], Wang et al. encode the BGP convergence problem in Answer

Set Programming. The approach scales well reaching some thou-
sands of nodes. However, it is not capable of providing concrete
examples for divergence.

This also illustrates another key difference to existing meth-
ods. We propose a verification flow that combines SMT solver and
executable specification in Maude. This enables us to exploit the
advantages enabled by each method, e.g., the use of SMT solvers to
simplify the model-checking problem.

9 Conclusions

This paper revisits the problem of BGP convergence verification,
aiming to develop a sound, scalable, and automated verification
approach. The key insight is to combine different automated verifi-
cation techniques. By encoding the Metarouting convergence crite-
rion using an SMT solver, we not only automate the convergence
check but also leverage the solver’s ability to generate unsatisfiable
cores. These cores highlight the critical links responsible for mono-
tonicity failing to hold, which in turn helps reduce the complexity
of the model-checking problem. We reduce the model-checking
task to a reachability analysis of divergent points, based on a sound
divergence criterion introduced in this paper.

There are several future directions. The proposed criterion is
sound, but not shown to be complete. We are also considering how
to express more realistic implementations of preference relations,
e.g., using pseudo-code.

Acknowledgments

This research is funded in part by the Ashton Fellowship at the Uni-
versity of Pennsylvania, the GEM Fellowship, and NSF IIS-2436080.

References

[1] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Notzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
Dana Fisman and Grigore Rosu (Eds.). Springer International Publishing, Cham,
415-442.

On the Automated Verification of BGP Convergence

(2]

(3

=

[10]

Armin Biere, Cyrille Artho, and Viktor Schuppan. 2002. Liveness Checking as
Safety Checking. In 7th International ERCIM Workshop in Formal Methods for
Industrial Critical Systems, FMICS 2002, ICALP 2002 Satellite Workshop, Malaga,
Spain, July 12-13, 2002 (Electronic Notes in Theoretical Computer Science, Vol. 66),
Rance Cleaveland and Hubert Garavel (Eds.). Elsevier, 160-177. doi:10.1016/S1571-
0661(04)80410-9

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet,
José Meseguer, and Carolyn Talcott. 2007. All About Maude: A High-Performance
Logical Framework. LNCS, Vol. 4350. Springer.

Matthew L. Daggitt and Timothy G. Griffin. 2024. Formally Verified Convergence
of Policy-Rich DBF Routing Protocols. IEEE/ACM Trans. Netw. 32, 2 (2024),
1645-1660. doi:10.1109/TNET.2023.3326336

Lixin Gao and Jennifer Rexford. 2000. Stable Internet routing without global
coordination. SIGMETRICS Perform. Eval. Rev. 28, 1 (June 2000), 307-317. doi:10.
1145/345063.339426

Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. 2002. The stable
paths problem and interdomain routing. IEEE/ACM Trans. Netw. 10, 2 (April
2002), 232-243. doi:10.1109/90.993304

Timothy G. Griffin and Jodo Luis Sobrinho. 2005. Metarouting. In Proceedings of
the 2005 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (Philadelphia, Pennsylvania, USA) (SIGCOMM °05).
Association for Computing Machinery, New York, NY, USA, 1-12. doi:10.1145/
1080091.1080094

Timothy G. Griffin and Gordon Wilfong. 1999. An analysis of BGP convergence
properties. SIGCOMM Comput. Commun. Rev. 29, 4 (Aug. 1999), 277-288. doi:10.
1145/316194.316231

Ratul Mahajan, David Wetherall, and Tom Anderson. 2002. Understanding BGP
misconfiguration. SIGCOMM Comput. Commun. Rev. 32, 4 (Aug. 2002), 3-16.
doi:10.1145/964725.633027

Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway Protocol 4
(BGP-4). RFC 4271. doi:10.17487/RFC4271

[11

[12

[13

[14

[15

(17

]

PPDP ’25, September 10-11, 2025, Rende, Italy

Rubén Rubio. 2022. Maude as a Library: An Efficient All-Purpose Programming
Interface. In Rewriting Logic and Its Applications: 14th International Workshop,
Revised Selected Papers. Springer-Verlag, Berlin, Heidelberg, 274-294. d0i:10.1007/
978-3-031-12441-9_14

Jodo Luis Sobrinho. 2003. Network routing with path vector protocols: theory and
applications. In Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (Karlsruhe, Germany)
(SIGCOMM °03). Association for Computing Machinery, New York, NY, USA,
49-60. doi:10.1145/863955.863963

Anduo Wang and Zhijia Chen. 2019. Internet Routing and Non-monotonic Rea-
soning. In Logic Programming and Nonmonotonic Reasoning - 15th International
Conference, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings (Lec-
ture Notes in Computer Science, Vol. 11481), Marcello Balduccini, Yuliya Lierler,
and Stefan Woltran (Eds.). Springer, 51-57. do0i:10.1007/978-3-030-20528-7_5
Anduo Wang, Alexander J. T. Gurney, Xianglong Han, Jinyan Cao, Boon Thau Loo,
Carolyn L. Talcott, and Andre Scedrov. 2014. A reduction-based approach towards
scaling up formal analysis of internet configurations. In 2014 IEEE Conference on
Computer Communications, INFOCOM 2014, Toronto, Canada, April 27 - May 2,
2014. IEEE, 637-645. doi:10.1109/INFOCOM.2014.6847989

Anduo Wang, Carolyn Talcott, Alexander J. T. Gurney, Boon Thau Loo, and Andre
Scedrov. 2012. Reduction-based formal analysis of BGP instances. In Proceedings
of the 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Tallinn, Estonia) (TACAS’12). Springer-Verlag, Berlin,
Heidelberg, 283-298. doi:10.1007/978-3-642-28756-5_20

Anduo Wang, Carolyn Talcott, Limin Jia, Boon Thau Loo, and Andre Scedrov.
2011. Analyzing BGP instances in Maude. In Proceedings of the Joint 13th IFIP
WG 6.1 and 30th IFIP WG 6.1 International Conference on Formal Techniques for
Distributed Systems (Reykjavik, Iceland) (FMOODS 11/FORTE’11). Springer-Verlag,
Berlin, Heidelberg, 334-348.

Ping Yin, Yinxue Ma, and Zhe Chen. 2014. Model Checking the Convergence
Property of BGP Networks. J. Softw. 9, 6 (2014), 1619-1625. doi:10.4304/JSW.9.6.
1619-1625

https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1109/TNET.2023.3326336
https://doi.org/10.1145/345063.339426
https://doi.org/10.1145/345063.339426
https://doi.org/10.1109/90.993304
https://doi.org/10.1145/1080091.1080094
https://doi.org/10.1145/1080091.1080094
https://doi.org/10.1145/316194.316231
https://doi.org/10.1145/316194.316231
https://doi.org/10.1145/964725.633027
https://doi.org/10.17487/RFC4271
https://doi.org/10.1007/978-3-031-12441-9_14
https://doi.org/10.1007/978-3-031-12441-9_14
https://doi.org/10.1145/863955.863963
https://doi.org/10.1007/978-3-030-20528-7_5
https://doi.org/10.1109/INFOCOM.2014.6847989
https://doi.org/10.1007/978-3-642-28756-5_20
https://doi.org/10.4304/JSW.9.6.1619-1625
https://doi.org/10.4304/JSW.9.6.1619-1625

	Abstract
	1 Introduction
	2 Border Gateway Protocol
	2.1 BGP By Example
	2.2 Metarouting

	3 Verification Workflow
	4 Automating BGP Convergence Check with SMT
	4.1 Computing a Monotonic Global Ranking
	4.2 Extracting Links of Interest From an Unsatisfiable Core

	5 Sound Criterion of BGP Divergence
	5.1 Formal Network Setup and Execution Model
	5.2 BGP Divergence Criterion
	5.3 Example

	6 Formalizing Criteria in Rewriting Logic
	6.1 System Modeling
	6.2 Rewrite Rules
	6.3 Search Space Reduction

	7 Evaluation
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

