
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3756907.3756920
.

.

RESEARCH-ARTICLE

On the Automated Verification of BGP Convergence

HAOYUN QIN, University of Pennsylvania, Philadelphia, PA, United States
.

GERALD WHITTERS, University of Pennsylvania, Philadelphia, PA, United States
.

BOON THAU LOO, University of Pennsylvania, Philadelphia, PA, United States
.

CAROLYN L TALCOTT, SRI International, Menlo Park, CA, United States
.

.

.

Open Access Support provided by:
.

SRI International
.

University of Pennsylvania
.

PDF Download
3756907.3756920.pdf
14 January 2026
Total Citations: 0
Total Downloads: 93
.

.

Published: 10 September 2025
.

.

Citation in BibTeX format
.

.

PPDP '25: Proceedings of the 27th
International Symposium on Principles
and Practice of Declarative Programming
September 10 - 11, 2025
Rende, Italy
.

.

PPDP '25: Proceedings of the 27th International Symposium on Principles and Practice of Declarative Programming (September 2025)
hps://doi.org/10.1145/3756907.3756920

ISBN: 9798400720857

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3756907.3756920
https://dl.acm.org/doi/10.1145/3756907.3756920
https://dl.acm.org/doi/10.1145/contrib-99661777612
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/doi/10.1145/contrib-99660639170
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/doi/10.1145/contrib-81100594279
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/doi/10.1145/contrib-81100565116
https://dl.acm.org/doi/10.1145/institution-60000461
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60000461
https://dl.acm.org/doi/10.1145/institution-60006297
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3756907.3756920&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ppdp
https://dl.acm.org/conference/ppdp
https://dl.acm.org/conference/ppdp
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3756907.3756920&domain=pdf&date_stamp=2025-12-13

On the Automated Verification of BGP Convergence
Haoyun Qin∗

University of Pennsylvania
Philadelphia, PA, USA
qhy@seas.upenn.edu

Boon Loo
University of Pennsylvania
Philadelphia, PA, USA

boonloo@seas.upenn.edu

Gerald Whitters∗
University of Pennsylvania

Philadelphia, PA, USA
whitters@seas.upenn.edu

Carolyn Talcott
SRI International

Menlo Park, CA, USA
carolyn.talcott@gmail.com

Abstract
The Border Gateway Protocol (BGP) is employed by autonomous

systems (ASes), such as network operators or ISPs, to build routing

tables. However, depending on the routing policies implemented

by these ASes, BGP may fail to converge, potentially rendering

the network inoperative. This paper introduces a workflow that

leverages SMT solvers and rewriting tools to automate the verifica-

tion of BGP convergence within a given AS network. We encode

the convergence conditions defined by the Metarouting theoretical

framework as an SMT problem. While SMT solvers can automati-

cally determine whether BGP will converge, they do not generate

counterexample traces in cases of divergence. To overcome this

shortcoming, we propose a sound divergence criterion. We also con-

struct an executable model for verifying BGP convergence, which

can be automated using the Maude rewriting tool to produce wit-

ness traces in divergent scenarios. The effectiveness of our approach

is demonstrated through a series of experiments.

CCS Concepts
• Theory of computation → Automated reasoning; Logic and
verification; Equational logic and rewriting; Verification by
model checking; • Networks → Routing protocols; Formal
specifications; Protocol testing and verification; • Mathemat-
ics of computing → Solvers.

Keywords
BGP, Maude, SMT, Metarouting

ACM Reference Format:
Haoyun Qin, Gerald Whitters, Boon Loo, and Carolyn Talcott. 2025. On
the Automated Verification of BGP Convergence. In Proceedings of the 27th
International Symposium on Principles and Practice of Declarative Program-
ming (PPDP ’25), September 10–11, 2025, Rende, Italy. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3756907.3756920

∗
Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.

PPDP ’25, Rende, Italy
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2085-7/25/09

https://doi.org/10.1145/3756907.3756920

1 Introduction
Due to the scale and concurrent nature of modern networks, iden-

tifying configuration bugs is a significant challenge. When such

issues go undetected, they can lead to severe and sometimes cata-

strophic network failures. The widely used Border Gateway Pro-

tocol (BGP) enables autonomous systems (ASes) to build routing

tables according to their packet forwarding policies, also known

as preference relations. Prior work has shown that poorly con-

figured or conflicting policies can prevent BGP from converging,

leading to unstable routing tables and rendering the network non-

operational [5, 8, 9]. We refer to the liveness property concerning

whether routing tables eventually stabilize as the BGP convergence
problem.

Reasoning about BGP convergence has long been a difficult prob-

lem due to the protocol’s asynchronous execution, path-dependent

decisions, and policy-driven behavior. Existing formal verification

methods for BGP convergence generally fall into two categories.

(1) Correct-by-design approaches, such as Metarouting [7, 12],

allow network engineers to ensure BGP convergence by

proving that the preference relations of ASes satisfy certain

monotonicity conditions [7, 12]. However, a major limitation

of these methods is their lack of automation, which prevents

them from efficiently detecting policy conflicts.

(2) Model-checking approaches [15, 16], in contrast, are designed

to identify policy errors automatically. However, either the

techniques proposed so far are not sound, meaning they

may produce false positives, i.e., flagging problems that do

not actually exist, or they are not scalable [17], not able to

determine divergence even for networks with less than 5

nodes.

This paper revisits the BGP convergence problem with the goal

of developing sound, scalable, and automated verification methods.

The central innovation lies in combining the strengths of the two

existing approaches. First, we automate correct-by-design tech-

niques to verify whether a given network instance is guaranteed to

converge. We show how SMT solvers can be employed to perform

this verification automatically.

When convergence cannot be guaranteed, we turn to model-

checkingmethods to uncover concrete counterexamples that demon-

strate divergence. These counterexamples provide valuable diagnos-

tic information, enabling network engineers to identify and correct

misconfigurations.

This is a Corrected VoR published on January 12, 2026. The VoR may still be accessed via the Supplemental Material section at https://dl.acm.org/doi/10.1145/3756907.3756920

https://orcid.org/0000-0001-7721-8196
https://orcid.org/0009-0003-2460-1409
https://orcid.org/0000-0002-4757-1746
https://orcid.org/0000-0003-2845-7144
https://doi.org/10.1145/3756907.3756920
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3756907.3756920

PPDP ’25, September 10–11, 2025, Rende, Italy Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

One of the main challenges in using model checking to find

a witness for BGP divergence is the potentially large size of the

network. Our key insight is to leverage the SMT solver’s ability to

generate unsat cores, which are minimal sets of constraints respon-

sible for unsatisfiability in the convergence check. In the context of

BGP, the unsat core highlights the specific network links and policy

interactions that contribute to divergence. These critical links are

then used to focus the model checker’s exploration, significantly

reducing the overall search space and improving efficiency.

To achieve this goal, this paper makes the following key contri-

butions:

• SMT Encoding of Metarouting:We present an encoding

of the Metarouting criteria for BGP convergence as an SMT

problem, enabling the use of SMT solvers to perform con-

vergence checks automatically. This approach overcomes

a central limitation of Metarouting, which is its lack of au-

tomation. Our approach allows engineers to systematically

verify convergence conditions.

• Sound Criterion for Divergence: Verifying liveness prop-

erties such as BGP convergence is inherently difficult. A

common approach is to reduce liveness verification to a

safety check [2]. We introduce a sound safety-based crite-

rion for detecting BGP divergence. This criterion relates

to the sequence of messages exchanged between ASes and

identifies conditions under which BGP fails to stabilize. It

leverages links identified in the SMT solver’s unsat core, i.e.,

candidate links that are involved in non-terminating BGP
computations, as input. To the best of our knowledge, this is

the first sound divergence criterion formulated for the BGP
convergence problem.

• Executable Model for BGP Verification: We demonstrate

that our divergence criterion can be fully automated. By for-

malizing both the criterion and BGP’s operational semantics

in rewriting logic, we enable executable verification using

the Maude rewriting tool [3]. Furthermore, we show how

the SMT-derived unsat core can be used to guide the search

process, significantly reducing the state space and enabling

the generation of meaningful counterexamples.

Our methods have been validated on networks combining sev-

eral networks gadgets, i.e., network patterns, which appear in the

literature. The experiments demonstrate that the methods can scale

to realistic size networks containing 500 nodes and 1200 edges.

Section 2 describes by example the BGP protocol, and the BGP
convergence problem including Metarouting. Section 3 provides

a general overview of the verification flow proposed in this pa-

per. Section 4 describes how SMT solvers can be used for BGP
verification, while Section 5 specifies the sound criterion used for

model-checking network gadgets. The proposed criterion is en-

coded in Maude enabling optimization as described in Section 6.

Section 7 validates the proposed verification flow with several ex-

perimental results. Finally, sections 8 and 9 conclude by discussing

related and future work.

0

1 210
120

20
210

a. Agree Gadget

0

1 2120
10

210
20

b. Disagree Gadget

Figure 1: Example gadgets to showcase convergence and di-
vergence in BGP

2 Border Gateway Protocol
2.1 BGP By Example
The Border Gateway Protocol (BGP) is a standardized exterior gate-

way protocol used for exchanging routing and reachability infor-

mation between autonomous systems (ASes) on the Internet [10].

BGP is categorized as a path-vector routing protocol [6], and it

determines routing decisions based on path attributes, network

policies, or rule sets configured by network administrators.

We illustrate BGP using the network gadgets shown in Figure 1,

while the exact algorithm is described in detail in [10]. These gad-

gets, called Agree Gadget and Disagree Gadget, respectively demon-

strate cases where BGP converges and where it may fail to do so.

Each node of a gadget is an AS. Each of these nodes have their

own policy for determining a preference on the paths for routing.

This policy is represented as an ordered list of paths in the figure

(written top to bottom next to the node that contains the policy).

A path 𝑝 that appears before a path 𝑞 in such a list is preferred

over 𝑞 in the corresponding policy. The distinction between Agree

Gadget and Disagree Gadget is that the former prefers to route

paths directly to 0, while the latter prefers to route paths through

a neighbor before reaching 0. A key objective of BGP is to deter-

mine the best routing paths with respect to the ASes’s preference
relations.

BGP is run asynchronously among all nodes in a gadget to com-

pute a satisfying path for each node. Each node receives paths from

the nodes it is directly connected to that allows it to learn valid

routes to a destination. Nodes will process these paths, and for each

path will determine a selected best path from all of its known valid

routes. The selected path is stored in a Routing Information Base

(RIB) for each node. When the node has no current valid path to a

destination we denote this with a special path ⊥.
For every neighbor a node has, it stores the most recent path

received from that neighbor in what is known as Routing Informa-

tion Base - Inbound (RIB-IN). Each node also keeps a FIFO queue

for each of its neighbors, these queues contain the paths received

from that neighbor but haven’t been processed by the node yet.

When a node processes a path to a destination, it checks whether

its policy prefers a valid path received from a neighbor over the

current path stored in its RIB for that destination. If so, the node

updates its RIB with the new path and broadcasts this updated

path to its neighbors.

In some cases, a node may later receive a different path from

the same neighbor that had previously sent the selected path RIB.
In this case, the path in the RIB is no longer a valid route. A new

On the Automated Verification of BGP Convergence PPDP ’25, September 10–11, 2025, Rende, Italy

Step Node 1 Node 2
Node 0 Node 2 Node 0 Node 1

0 RIB-IN ⊥ ⊥ ⊥ ⊥
QUEUE [(1, 0)] [] [(2, 0)] []

1 RIB-IN (1,0) ⊥ ⊥ ⊥
QUEUE [] [] [(2, 0)] [(2, 1, 0)]

2 RIB-IN (1,0) ⊥ (2,0) ⊥
QUEUE [] [(1, 2, 0)] [] [(2, 1, 0)]

Table 1: Initial BGP Steps For Agree Gadget and Disagree
Gadget

one must be selected from its known paths stored in the RIB-IN. If
there are no valid paths that can be selected from a node’s RIB-IN,
the special path ⊥ is announced to its neighbors instead.

To showcase scenarios when BGP can find a solution and con-

verge, as well as, when BGP might oscillate forever and diverge

resulting in no solution, we explore an execution of BGP on Agree

Gadget and Disagree Gadget. For both gadgets, assume that BGP is

used to determine the best paths to node 0. Due to the two gadgets

only differing in path preferences, the first few steps taken when

executing BGP will essentially be the same. Paths will be written in

the form (𝑛1, 𝑛2, ..., 𝑛𝑘) for nodes 𝑛1, 𝑛2, ..., 𝑛𝑘 and 𝑘 ∈ N. Queues
will be written in the form [𝑝1, 𝑝2, . . . , 𝑝𝑘] for paths 𝑝1, 𝑝2, . . . , 𝑝𝑙
and 𝑙 ∈ N.

We show those steps here running it on both gadgets in parallel

and will discuss the gadgets individually when their execution

would begin to differ. The results of each step of BGP is shown

in the tables 1, 2, and 3. We show for nodes 1 and 2 the currently

stored values of the RIB-IN and queue for each of their neighbors.

The RIB for each node is designated by the RIB-IN value that

is boxed when applicable. Initially, in step 0, node 0 will have

already advertised to its neighboring nodes 1 and 2 the unit path

(0). The corresponding paths, (1, 0) and (2, 0) are stored at the

queues for node 1 and node 2 respectively. Next, both of these

nodes can process the path. In step 1, node 1 will process path (1, 0)
and then in step 2, node 2 will process path (2, 0). At both these

steps, the RIB-IN entries at the node are ⊥ before any processing

is done. Thus, when each node processes its path in the queue, it

will store this in its RIB-IN and then select that path as its RIB
and announce this path to its neighbor. From step 3 and on we

consider two different cases for Agree Gadget and Disagree Gadget

respectively.

Agree Gadget consistently converges to a solution, regardless of

the execution order in BGP. A straightforward example of its con-

vergence can be demonstrated by continuing from the previously

described steps. Let both nodes 1 and 2 process the single path in

each of their non-empty queues in step 3 and in step 4 in sequence.

Each queue contains a path that routes to a neighbor before finally

reaching node 0. However, as discussed earlier, both nodes have a

policy to prefer routes directly to 0. Since both nodes already have

such a path selected as their RIB, when they process the path from

their queues, they will store the path in the RIB-IN, but no new

RIB will be selected, resulting in no new paths being announced

from either node. All the queues are now exhausted, so BGP has

Step Node 1 Node 2
Node 0 Node 2 Node 0 Node 1

3 RIB-IN (1,0) ⊥ (2,0) ⊥
QUEUE [] [] [] [(2, 1, 0)]

4 RIB-IN (1,0) ⊥ (2,0) ⊥
QUEUE [] [] [] []

Table 2: BGP Steps for Agree Gadget

Step Node 1 Node 2
Node 0 Node 2 Node 0 Node 1

3 RIB-IN (1,0) (1, 2, 0) (2,0) ⊥
QUEUE [] [] [] [(2, 1, 0); (2, 1, 2, 0)]

4 RIB-IN (1,0) (1, 2, 0) (2,0) (2, 1, 0)

QUEUE [] [(1, 2, 1, 0)] [] [(2, 1, 2, 0)]

5 RIB-IN (1,0) (1, 2, 1, 0) (2,0) (2, 1, 0)

QUEUE [] [] [] [(2, 1, 2, 0); (2, 1, 0)]

6 RIB-IN (1,0) (1, 2, 1, 0) (2,0) (2, 1, 2, 0)

QUEUE [] [(1, 2, 0)] [] [(2, 1, 0)]

Table 3: BGP steps for Disagree Gadget

terminated for Agree Gadget, giving the solution (1, 0) as the RIB
for node 1 and (2, 0) as the RIB for node 2.

In general, a gadget may converge for some ordering of execu-

tions for BGP and diverge for others. For example, Disagree Gadget

is not guaranteed to converge and we can display an example of

its divergence. We again continue from the previously discussed

common steps and start at step 3. Let both nodes 1 and 2 process

the single path in each of their non-empty queues in step 3 and in

step 4 in sequence. This time, when each node processes the path

in their queue and stores it in their RIB-IN, they will determine

that this new path is more preferred by its policy, selecting it as its

current RIB and sending it to its neighbor. At step 5 both nodes

again only have a single path in any of its queues. Let both nodes 1

and 2 process the single path in each of their non-empty queues in

step 5 and in step 6 in sequence. These paths replace the RIB-IN
entry that is selected as the node’s RIB but are not allowed by the

policy, so each node will now need to fallback to its previous RIB
that routed directly through node 0, and announce this path to its

neighbors. The RIB, RIB-IN, and queues in step 6 are identical to

those in step 2. It’s clear to see that steps 3 to 6 can be repeated

after step 6 indefinitely, resulting in BGP never terminating and

thus diverging.

2.2 Metarouting
Metarouting [7, 12] showcases the use of Routing Algebras to de-

sign and represent routing protocols like BGP. The algebra can be

written as a tuple (Σ,𝑊 , ⪯, 𝐿, 𝜙, ⊕, 𝑓) [7, 12],
• Σ is a set of signatures containing the paths in the network;

• 𝑊 is a set of weights used to order the elements of Σ;
• ⪯ is a total order on𝑊 ;

• 𝐿 is a set of labels for the nodes in the network;

PPDP ’25, September 10–11, 2025, Rende, Italy Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

Network
Instance
Encoding

Sat
BGP

Converges
Yes

Conflicting
Network Links

No

SMT
Solver

MaudeDivergence
Witnesss

Figure 2: Verification Flow for BGP Verification

• 𝜙 ∈ Σ is the special signature representing paths not allowed

by the network’s policy;

• ⊕ is a binary operator that creates a new signature from

an input of a label and a signature by prepending the node

corresponding to the label to the path corresponding to the

signature;

• 𝑓 is a function that maps elements from Σ to elements in𝑊 .

One of the benefits of this representation is that it is sufficient

to show that if a Routing Algebra is monotonic, ∀𝑙 ∈ 𝐿, ∀𝛼 ∈ Σ :

𝑓 (𝛼) ⪯ 𝑓 (𝑙 ⊕ 𝛼), then the corresponding network will converge.

We use ≺ when 𝑎 ⪯ 𝑏 and 𝑎 ≠ 𝑏.

We use Agree Gadget and Disagree Gadget from Figure 1 to

provide examples for a routing algebra. As noted previously, the

policy of Agree Gadget prefers to traverse directly to the destination

while Disagree Gadget prefers to traverse using a neighbor before

reaching the destination, otherwise the gadgets are identical. When

defining a routing algebra we can use the same symbols and defini-

tions for both gadgets except when defining the function 𝑓 . We use

the notation 𝑓𝐴 for Agree Gadget and 𝑓𝐷 for Disagree Gadget, oth-

erwise the other symbols will be shared between the two. We have

that𝑊 = {1, 2}, 𝐿 = {0, 1, 2}, Σ = {(1, 0), (1, 2, 0), (2, 0), (2, 1, 0)}.
For the functions 𝑓𝐴 and 𝑓𝐷 , we define them such that:

𝑓𝐴 ((1, 0)) = 1

𝑓𝐴 ((1, 2, 0)) = 2

𝑓𝐴 ((2, 0)) = 1

𝑓𝐴 ((2, 1, 0)) = 2

𝑓𝐷 ((1, 0)) = 2

𝑓𝐷 ((1, 2, 0)) = 1

𝑓𝐷 ((2, 0)) = 2

𝑓𝐷 ((2, 1, 0)) = 1

(1)

Using these definitions, it is straightforward to confirm themono-

tonicity property for the algebra, or provide a counter example. For

Agree Gadget it is clear that 1 = 𝑓𝐴 ((1, 0)) ⪯ 𝑓𝐴 ((2, 1, 0)) = 2 and

1 = 𝑓𝐴 ((2, 0)) ⪯ 𝑓𝐴 ((1, 2, 0)) = 2. Hence, the algebra is monotonic

and Agree Gadget converges. On the other hand, for the algebra

corresponding for Disagree Gadget to be monotonic we need the

following to hold 2 = 𝑓𝐷 ((1, 0)) ⪯ 𝑓𝐷 ((2, 1, 0)) = 1, implying that

2 ⪯ 1, which is clearly false. Hence, we cannot make the same

statement about convergence for Disagree Gadget.

Theorem 2.1. [7, 12] For a network gadgetN , if a Routing Algebra
corresponding to N is monotonic then BGP always converges for N .

3 Verification Workflow
Figure 2 shows the main steps and tools proposed for the BGP

verification. The key insight is to combine (1) SMT solvers to auto-

matically check for BGP convergence and (2) the Maude rewriting

tool to enable the generation of a witness trace of BGP divergence.

The witness trace can then be used by engineers to correct network

configurations, e.g., path preference policies.

The main challenge of producing such a witness is the great

size of networks which render model-checkers impractical. The

solution uses SMT solver’s capability of producing unsat cores to

help pinpoint which part of the network might be contributing to

BGP divergence, called the conflicting network links. This informa-

tion is then used to enhance model-checking performance making

verification feasible for larger networks.

The main steps of the verification flow are as follows and are

made precise in the subsequent sections:

(1) BGP Network Instance: The input of the verification flow

is the encoding of the network instance in SMT. The en-

coding specifies the network topology and path preference

policies. This encoding is used by both the SMT solver and

Maude in subsequent steps.

(2) SMT Solver: From the encoding of the network instance, an

SMT problem is generated specifying the BGP convergence

criterion specified by Metarouting [7, 12]. The satisfiability

of this problem implies that BGP convergence is always

guaranteed (Section 4).

(3) Conflicting Network Links Extraction: If the SMT prob-

lem for BGP convergence is not satisfiable, then the second

part of the flow starts with the objective of producing a wit-

ness for divergence. In particular, the unsat core produced

by the SMT solver contains the network links that may con-

tribute to the divergence.

(4) Maude Model-Checking: The model-checking problem

(Section 6) consists of proposed sound criterion for diver-

gence (Section 5). It takes as inputs the conflicting network

links and returns a witness of BGP divergence. Since the

method is sound, but not shown to be complete, computation

may not terminate.

4 Automating BGP Convergence Check with
SMT

4.1 Computing a Monotonic Global Ranking
The metarouting work described previously shows that if a Rout-

ing Algebra is monotonic, then the corresponding network will

converge (Theorem 2.1). Automating this check has been an open

problem for which we address in this section. The key insight is

instead of proving monotonicity, we check whether there is a global

ranking among the paths in the network such that preserves the

local preferences of paths and is monotonic.

Definition 4.1. A global ranking of paths in a network is a total

ordering among the paths such that if a node prefers path 𝑝 over

path 𝑞 then path 𝑝 has a higher rank than path 𝑞. A global ranking

is monotonic if 𝑝 = 𝑛 ⊕ 𝑞 then path 𝑝 has a higher rank than path 𝑞.

Lemma 4.2. A routing algebra is monotonic if and only if there
exists a monotonic global ranking.

Proof. The backward direction is immediate, as if there is a

global rank that is monotonic, then the algebra is also monotonic.

For the forward direction, assume that a Routing Algebra is mono-

tonic. Then we can obtain a global order by using the total order

obtained by the topological sorting of the partial order of in the

routing algebra that gives us the monotonic global ranking. □

On the Automated Verification of BGP Convergence PPDP ’25, September 10–11, 2025, Rende, Italy

We utilize an SMT solver, cvc5 [1], to find a global ranking and

determine if a network will converge. cvc5 supports the defining of

custom datatypes and the theory of sequences. We create a custom

datatype consisting of the nodes in a given gadget. This should

allow the solver to more effectively search for a solution as for

any given symbol of the custom datatype, there are only finitely

many choices. Paths are represented as sequences of this custom

datatype. The sequence theory allows us to reason about sequences

and various built in operations on sequences, e.g., concatenation,

length, subsequence, etc.

First, we define two helper functions, H and T, to be used by the

SMT Solver:

• H takes as input a path 𝑝 and returns the first node in that

path

• T takes as input a path 𝑝 and returns that path without its

first node H(𝑝)
Theories in SMT require that all functions are total, so the SMT

solver is free to assign any value to H or T for inputs that these

functions are not properly defined for, e.g., the empty path. Though,

this shouldn’t present any issues in our implementation.

We also define the function S that takes a path and returns an

integer to represent the local policy at each node. Let 𝑝 and 𝑞 be

paths that start from the same node 𝑛, i.e., H(𝑝) = 𝑛 = H(𝑞).
• If 𝑝 ≠ 𝑞 then S(𝑝) ≠ S(𝑞);
• If S(𝑝) > S(𝑞) then node 𝑛 prefers path 𝑝 to path 𝑞;

• If 𝑝 is the empty path then S(𝑝) = 0;

• If 𝑝 is allowed by the policy at node 𝑛 then S(𝑝) > 0;

• If 𝑝 is not allowed by the policy at node 𝑛 then S(𝑝) < 0.

In our examples, each policy at a node is represented as an

ordered list of allowed paths. We assign the last element in the list

the integer 1 and iterate backwards assigning increasingly higher

integers for each subsequent member iterated through. Any non

empty path not seen at one of the policies is mapped to −1.
Lastly, we define the function R that takes a path and returns

a natural number to represent the global ranking. Let 𝑝 and 𝑞 be

paths.

• If 𝑝 ≠ 𝑞 then R(𝑝) ≠ R(𝑞);
• The ranking is in ascending order of the naturals such that

if R(𝑝) < R(𝑞) then 𝑝 is ranked higher than 𝑞;

• If 𝑝 is the empty path then R(𝑝) = 0;

• The ranking must preserve the ordering of the local pref-

erences for each node’s policies, i.e., if H(𝑝) = H(𝑞) and
S(𝑝) > S(𝑞) then R(𝑝) < R(𝑞);

• The ranking must also be monotonic, i.e., if T(𝑝) = 𝑞 then

R(𝑝) > R(𝑞).
Let 𝑃 be all the paths allowed by a node in the network. To define

R in SMT we use the following formulas: ∀𝑝, 𝑞 ∈ 𝑃

(1) 𝑝 ≠ 𝑞 =⇒ R(𝑝) ≠ R(𝑞)
(2) 𝑝 ≠ 𝑞 ∧ H(𝑝) = H(𝑞) ∧ S(𝑝) < S(𝑞) =⇒ R(𝑝) > R(𝑞)
(3) T(𝑝) = 𝑞 =⇒ R(𝑝) > R(𝑞)
Formulas consisting of quantifiers like ∀ can be extremely diffi-

cult for SMT solvers to deal with. To avoid this problem, we instead

iterate through all the paths in 𝑃 and construct corresponding for-

mulas for every pair 𝑝, 𝑞 ∈ 𝑃 to send to the solver. (1) requires that

distinct paths are given distinct global rankings, (2) requires that

local preferences are preserved, and (3) requires monotonicity. If

the solver returns satisfiable (SAT), then it was able to find a global

ranking.

Theorem 4.3. The SMT encoding of a gadget, described above, is
satisfiable if and only if there is a monotonic routing algebra for the
corresponding gadget.

Proof. Suppose that the SMT solver returns SAT after given the

formulas described above. Then a monotonic global ranking can

be extracted from R directly as the preferences of the local policies

will be preserved from the constraints correspond to (2) and the

formulas corresponding to (3) force the ranking to be monotonic.

It follows from Lemma 4.2, the existence of the routing algebra.

Now, suppose that such a monotonic global ranking exists. Then,

theremust be an ordering of the paths that preserves the preferences

of the local policies and is monotonic. One can construct from this

ordering a model satisfying all the formulas of the SMT encoding

by using the the order for R and the local preferences for S. □

The result of SAT to compute a global ranking implies that

the network converges for BGP. If the solver returns unsatisfiable
(UNSAT), then no such global ranking exists. The monotonicity

condition is sufficient but not necessary, so it cannot be determined

whether the gadget converges or diverges given an UNSAT result

alone from the solver. To address this limitation we take advantage

of the solver’s unsat core and use this in a heuristic to attempt to

find an example of divergence to both confirm the gadget does in-

deed diverge and to reveal the troublesome properties of the gadget

that lead to the divergence so that a user may make appropriate

changes to the gadget to ensure BGP converges for their network.

4.2 Extracting Links of Interest From an
Unsatisfiable Core

To achieve this we use what is known as anUNSAT core. AnUNSAT
core is a subset of the input constraints that would lead to anUNSAT
result. In particular, we query in search for a minimal UNSAT core

in cvc5, a subset of the constraints 𝑈𝐶 that the solver produces

UNSAT for, but any strict subset of𝑈𝐶 produces SAT. This core may

not be the minimum possible size but it can have drastically fewer

elements than the original input set. Any computed UNSAT core

would reveal a conflict in propositions that make it impossible to

satisfy the monotonicity condition to correctly define R. Since we
form each constraint from a concrete pair of paths 𝑝, 𝑞, rather than

using any quantifiers, when examining the UNSAT core the set of

paths that fail to preserve monotonicity are explicitly displayed.

For each path 𝑝𝑖 = (𝑛1, 𝑛2, . . . , 𝑛𝑘) that appears in a constraint

from a minimal UNSAT core such that 𝑘 > 2, we compute 𝑙𝑖 as the

link from node 𝑛1 to node 𝑛2. All such links, 𝑙𝑖 , are passed to our

implementation using Maude as described in the following section

6 to aid in locating a sequence of states from executing BGP that

diverges for a given gadget.

To provide an example of what an unsat core might look like for

a gadget that diverges, consider Naughty Gadget as shown in Figure

3. It is not difficult to show that this gadget can diverge, oscillating

between processing paths from node 3 and node 4. Building the

corresponding boolean constraints for this gadget as described

above and sending it to the SMT solver gives an UNSAT result.

PPDP ’25, September 10–11, 2025, Rende, Italy Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

0

1 2

3 4

120
10

210
20

3420
30

430
420

Figure 3: Naughty Gadget

Further, taking a look at the unsat core provided by the solver will

look like the following:

• Score Constraints

– S((3, 0)) = 1

– S((3, 4, 2, 0)) = 2

– S((4, 2, 0)) = 1

– S((4, 3, 0)) = 2

• Local Pref Constraints

– H((3, 0)) = H((3, 4, 2, 0)) ∧ S((3, 0)) < S((3, 4, 2, 0))
=⇒ R((3, 0)) > R((3, 4, 2, 0))

– H(4, 2, 0)) = H((4, 3, 0)) ∧ S(4, 2, 0)) < S((4, 3, 0))
=⇒ R((4, 2, 0)) > R((4, 3, 0))

• Monotonic Constraints

– T((3, 4, 2, 0)) = (4, 2, 0)
=⇒ R((3, 4, 2, 0)) > R((4, 2, 0)

– T(4, 3, 0)) = (3, 0)
=⇒ R((4, 3, 0)) > R((3, 0))

It is apparent that each constraint listed containing an implica-

tion symbol has its antecedent as evaluating to true, so we focus

on just the conclusion when discussing these propositions. A chain

of inequalities can be created such that:

R((3, 0)) > R((3, 4, 2, 0))
> R((4, 2, 0))
> R((4, 3, 0))
> R((3, 0))

This would require that R(3, 0) > R(3, 0), but this is a contradic-
tion. Hence, no ranking can be found satisfying the monotonicity

conditions. This is shown using only 8 of the 217 total constraints

originally given to the solver. Moreover, these paths found in the

unsat core only begin from nodes 3 and 4 and only directly route

through nodes 2, 3, 4 from its starting node, excluding the common

destination 0. We compute the links: node 3 to node 4, node 4 to

node 2, and node 4 to node 3 as the set of links to send to Maude

as a parameter to help in the search for an oscillating sequence

of states that would cause divergence, using only 3 of the 11 total

links in Naughty Gadget.

5 Sound Criterion of BGP Divergence
Following the verification flow described in Section 3, if the SMT

solver does not produce SAT result for convergence, the task is

to provide a counterexample for engineers to use for debugging

purposes if possible.

In principle, model-checkers can determine counterexamples for

liveness properties such as the BGP convergence property, but these
checks are notoriously difficult. We follow instead the solution of

reducing the checking of a liveness property to the checking of a

safety property [2]. This reduction enables the model-checker to

make more effective use of invariants thus considerably improving

performance.

This section introduces such a safety property. Intuitively, we

observe that divergence often manifests as cycles in the flow of

messages across links, where specific paths are continuously pro-

duced and consumed in a repeating pattern without ever leading

to stabilization. This motivates us to study the link-level message

dynamics of BGP execution and to define divergence in terms of

patterns in message production and consumption.

The following subsections formalize the BGP divergence cri-

terion. Section 5.1 reviews the trace semantics of BGP networks

based on the Simple Path Vector Protocol introduced by Griffin

et al. [6]. Section 5.2 introduces the divergence property based on

the messages that are produced and consumed by network links.

Section 5.3 illustrates the criterion with an example.

5.1 Formal Network Setup and Execution Model
We begin by formalizing the BGP network abstraction. A BGP
network instance is represented by a gadget 𝐺 = (N , peer,P, 𝑆0),
whereN is the finite set of nodes, peermaps each node to its peers,

P is the local preference table assigning rankings to paths, and

𝑆0 = (Rib,Rib-In,Q) is the initial state of the system. Each state,

including the initial state 𝑆0, can be viewed as the gathering of the

states maintained by each node 𝑁 ∈ node, i.e.,

• Rib(𝑁): the best path currently selected by 𝑁 ;

• Rib-In(𝑁): a mapping from peers to their most recent path

advertisements;

• Q(𝑁 ⇐ 𝑁 ′): a FIFO queue of messages pending from neigh-

bor 𝑁 ′
to 𝑁 , per neighbor 𝑁 ′

.

Execution Model Abstraction. The semantics of BGP route selec-

tion and message propagation follow the Simple Path Vector Proto-

col (SPVP) model introduced by Griffin et al. [6]. SPVP simplifies

BGP to a message-passing system where each node asynchronously

processes received paths, applies local preferences, and may update

its selection and generate new messages.

The behavior of the BGP network is modeled via a scheduling

algorithm A, which selects, at each step, a valid transition 𝑡 =

(𝑁𝑟 ⇐ 𝑁𝑠 , 𝑃), representing node 𝑁𝑟 processing path 𝑃 received

from neighbor 𝑁𝑠 . A transition is said to be valid for a state if 𝑃 is

the head of the corresponding queue in that state. The execution

of a transition results in the update of the the system state via the

SPVP transition function.

Built on the above specification, an execution trace T is a se-

quence of states 𝑆0, 𝑆1, . . . , 𝑆𝑛 , where each transition corresponds

to a valid transition applied according to an algorithm A. Each

trace implicitly induces a sequence of message productions and

consumptions along each directed link.

On the Automated Verification of BGP Convergence PPDP ’25, September 10–11, 2025, Rende, Italy

5.2 BGP Divergence Criterion
To capture divergence in terms of observable system behavior, we

introduce the notions of message production and consumption on

each link.

Definition 5.1. For each directed link 𝑁 ⇐ 𝑁 ′
and a trace 𝜏 =

(𝑆𝐴, 𝑆1, . . . , 𝑆𝐵), we denote,
• 𝑃𝐴{𝐵

𝑁⇐𝑁 ′ : the list of paths produced by 𝑁 ′
and sent to 𝑁 in

the segment 𝑆𝐴 { 𝑆𝐵 of the trace 𝜏 ;

• 𝐶𝐴{𝐵
𝑁⇐𝑁 ′ : the list of paths consumed by 𝑁 from 𝑁 ′

in the

segment 𝑆𝐴 { 𝑆𝐵 of the trace 𝜏 .

These sequences are computed recursively over the trace, respect-

ing the FIFO semantics of BGP message queues. The divergence of

a link can further be indicated by a cyclic pattern in the production

sequence that constantly replenishes the queue, thereby preventing

stabilization.

We now define the central notion of a divergence point, which

characterizes a trace segment that establishes recurring behavior

indicative of global divergence.

Definition 5.2. A state 𝑆𝐵 is said to be a divergence point of a

prior state 𝑆𝐴 if the following requirements are met:

(1) The control plane state, i.e., the selected paths (Rib) and the

received advertisements (Rib-In), are same for both states;

(2) There exists a trace 𝜏 = (𝑆𝐴, 𝑆1, . . . , 𝑆𝐵) such that for every

link 𝑁 ⇐ 𝑁 ′
that is active in the trace, the message produc-

tion sequence 𝑃𝐴{𝐵
𝑁⇐𝑁 ′ , consumption sequence 𝐶𝐴{𝐵

𝑁⇐𝑁 ′ , and

the 𝑆𝐴 message queue Q𝐴 (𝑁 ⇐ 𝑁 ′) exhibit the following
relationship,

• We can find three natural numbers 𝑘𝑝 , 𝑘𝑐 , 𝑘𝑞 ∈ N, and a

basic recurrent path pattern 𝑅 = 𝑅𝑝 + 𝑅𝑠 , where the prefix
𝑅𝑝 and the suffix 𝑅𝑠 together form the loop body 𝑅, such

that,

• the production sequence can be written as 𝑅𝑠 + 𝑅𝑘𝑝 + 𝑅𝑝 ,

• the consumption sequence is some repetition of 𝑅, i.e.,

𝑅𝑘𝑐 ,

• the original message queue is in the form of 𝑅𝑘𝑞 +𝑅𝑝 , and
• 𝑘𝑝 + 1 ≥ 𝑘𝑐 ensures that the queue never drains.

This condition ensures that the queue state is self-sustaining, i.e.,

the system can re-enter the same queue configuration at 𝑆𝐵 after

consuming and producing such configuration of paths, enabling

further repetition. This is formalized by the following statements.

Theorem 5.3. If a trace segment 𝑆𝐴 { 𝑆𝐵 satisfies the divergence
point conditions, then there must exist a further segment 𝑆𝐵 { 𝑆𝐶
that also ends in a divergence point 𝑆𝐶 with respect to 𝑆𝐵 .

This means that any trace segment satisfying the divergence

point conditions can be extended to an infinite trace.

Corollary 5.4. If a BGP instance has a trace with a trace segment
𝑆𝐴 { 𝑆𝐵 satisfying the divergence point conditions, then BGP does
not always converge for the given BGP instance.

5.3 Example
We illustrate the divergence criterion using the Disagree Gadget
described in Section 2. The topology and local preferences are

shown in Figure 1.

Starting from the initial state 𝑆0, the following trace can be

constructed,

𝑆0
𝑁1⇐𝑁0−−−−−−→
(𝑁0)

𝑆1
𝑁2⇐𝑁0−−−−−−→
(𝑁0)

𝑆2
𝑁1⇐𝑁2−−−−−−−→
(𝑁2,𝑁0)

𝑆3
𝑁2⇐𝑁1−−−−−−−→
(𝑁1,𝑁0)

𝑺4

𝑁1⇐𝑁2−−−−−−−−−→
(𝑁2,𝑁1,𝑁0)

𝑆5
𝑁2⇐𝑁1−−−−−−−−−→

(𝑁1,𝑁2,𝑁0)
𝑆6

𝑁1⇐𝑁2−−−−−−−→
(𝑁2,𝑁0)

𝑆7
𝑁2⇐𝑁1−−−−−−−→
(𝑁1,𝑁0)

𝑺8,

where each transition 𝑡 = (𝑁𝑟 ⇐ 𝐿𝑠 , 𝑃) is denoted as 𝑆
𝑁𝑟⇐𝑁𝑠−−−−−−−→

𝑃
𝑆 ′,

where 𝑁𝑟 processes a path 𝑃 (the front of the queue) received

from 𝑁𝑠 . We now show that the subtrace 𝑆4 { 𝑆8 demonstrates a

violation in our proposed safety property for divergence, as 𝑆8 is a

divergence point with respect to 𝑆4.

Control Plane. First, we observe that the control plane state re-
mains unchanged, thus satisfying condition (1) of Definition 5.2:

𝑆4 .Rib(𝑁1) = 𝑆8 .Rib(𝑁1) = (𝑁1, 𝑁2, 𝑁0),

𝑆4 .Rib(𝑁2) = 𝑆8 .Rib(𝑁2) = (𝑁2, 𝑁1, 𝑁0),

𝑆4 .Rib-In(𝑁1) = 𝑆8 .Rib-In(𝑁1) = {𝑁0 : (𝑁0), 𝑁2 : (𝑁2, 𝑁0)},

𝑆4 .Rib-In(𝑁2) = 𝑆8 .Rib-In(𝑁2) = {𝑁0 : (𝑁0), 𝑁1 : (𝑁1, 𝑁0)}.

Message Dynamics. Next, we examine the message dynamics on

the two active links,

• For 𝑁1 ⇐ 𝑁2,

𝐶4{8

𝑁1⇐𝑁2

= [(𝑁2, 𝑁1, 𝑁0), (𝑁2, 𝑁0)]

𝑃4{8

𝑁1⇐𝑁2

= [(𝑁2, 𝑁0), (𝑁2, 𝑁1, 𝑁0)]

𝑆4 .Q(𝑁1 ⇐ 𝑁2) = [(𝑁2, 𝑁1, 𝑁0)]

• For 𝑁2 ⇐ 𝑁1,

𝐶4{8

𝑁2⇐𝑁1

= [(𝑁1, 𝑁2, 𝑁0), (𝑁1, 𝑁0)]

𝑃4{8

𝑁2⇐𝑁1

= [(𝑁1, 𝑁0), (𝑁1, 𝑁2, 𝑁0)]

𝑆4 .Q(𝑁2 ⇐ 𝑁1) = [(𝑁1, 𝑁2, 𝑁0)]

We now demonstrate that the divergence point condition holds

for both links. Consider the following lasso recurring structure,

• for 𝑁1 ⇐ 𝑁2, 𝑅𝑝 = [(𝑁2, 𝑁1, 𝑁0)], 𝑅𝑠 = [(𝑁2, 𝑁0)], 𝑘𝑞 =

𝑘𝑝 = 0, 𝑘𝑐 = 1,

• for 𝑁2 ⇐ 𝑁1, 𝑅𝑝 = [(𝑁1, 𝑁2, 𝑁0)], 𝑅𝑠 = [(𝑁1, 𝑁0)], 𝑘𝑞 =

𝑘𝑝 = 0, 𝑘𝑐 = 1.

Thus, the divergence point condition is satisfied: the message

queue maintains a self-replenishing pattern, and the system can

re-enter the same configuration after each cycle, enabling indefinite

repetition.

This demonstrates that BGP fails to converge in this instance,

as the trace segment 𝑆4 { 𝑆8 satisfies the safety-based divergence

condition.

PPDP ’25, September 10–11, 2025, Rende, Italy Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

Further Remarks. In order to automate the search for a diverging

point one needs to determine the candidate trace from 𝑆𝐴 { 𝑆𝐵 .

This is in principle not feasible when verifying large networks with

hundreds of nodes. A key insight, as we describe in more detail in

Section 6, is to provide as input the set of links that are activate in

the candidate trace. This set of candidates, as illustrated in Figure 2,

can be determined from the unsat core obtained from the SMT

solver. Given this input of candidate links, verification is feasible

as the model-checker can use this fact to reduce state-space.

0

1 2

3 4

120
10

210
20

3420
30

420
430

Figure 4: Bad Gadget

The proposed criterion is sound, but its completeness is still open

and left to future work. Indeed the bad gadget shown in Figure 4

is an example for which the criterion does not seem to work. In

particular, the model-checker fails to converge, that is, it does not

terminate. It is not clear whether it is because for this gadget the

problem is indeed hard or whether the criterion is incomplete. We

suspect the latter.

6 Formalizing Criteria in Rewriting Logic
Building on the divergence criterion proposed in the previous sec-

tion, this section describes how we formalize and implement the

criterion in rewriting logic using the Maude system. Our goal is to

model BGP network behavior faithfully and to enable automated

search for divergence traces that satisfy our safety-based condition.

We organize the presentation into three parts: Section 6.1 de-

scribes the formal system model in Maude, Section 6.2 presents the

rewrite rules for protocol execution, and Section 6.3 discusses how

the search space is reduced using the SMT-generated unsat core

and other rewriting heuristics.

6.1 System Modeling
We model a BGP network as a set of nodes (i.e., autonomous sys-

tems) and a booking object for our proposed divergence criterion.

Nodes: Each node is represented as an object in Maude, as illus-

trates the following term:

< N1 : NodeClass | id : nid(1),
rib : nid(1) nid(2) nid(0),
rib-in : (

(nid(1) <= nid(0)) !-> nid(0),
(nid(1) <= nid(2)) !-> nid(2) nid(0)

),
permitted : (

(nid(2) nid(0)) :: nid(0)
),
neighbours : nid(2),
queue : (

(nid(1) <= nid(2)) !-> nid(2) nid(1) nid(0)) >,

A node term encapsulates its local state, including its identifier

(id), selected path (rib), received advertisements (rib-in), pref-
erences (i.e. policies) (permitted), and pending message queues

(queue). For example, in the instance above for a node nid(1),
the path selected to node nid(0) passes through nodes nid(2);
(nid(1) <= nid(2)) !-> (nid(2) nid(0)) denotes that node

nid(2) advertised to node nid(1) its best path to node nid(0) as

passing through node nid(2); and (nid(2) nid(0)) :: nid(0)
indicates that the path going through nid(2) to nid(0) is more

preferable than directly routing to nid(0), and these are the only

two permitted paths; finally, the queue stores the advertisements

to be processed by the node.

Bookkeeping object: In addition to the network nodes, the system

also includes a bookkeeping object for our proposed divergence

criterion. This object maintains trace information necessary for

evaluating the proposed divergence point condition.

< DPC : DPClass | sz : 2,
consume : (

(nid(1) <= nid(2)) !-> nid(2) nid(1) nid(0)
++ (nid(2) <= nid(1)) !-> nid(1) nid(2) nid(0)

),
produce : (

nid(1) !-> nid(1) nid(0)
++ nid(2) !-> nid(2) nid(0)

),
init : (

(nid(2) <= nid(1)) !-> nid(1) nid(2) nid(0),
(nid(1) <= nid(2)) !-> nid(2) nid(1) nid(0)

),
all-rib : (

(nid(1) nid(2) nid(0) ; nid(2) nid(1) nid(0))
++ (nid(1) nid(0) ; nid(2) nid(1) nid(0))

),
all-rib-in : ((

(nid(1) <= nid(0)) !-> nid(0),
(nid(2) <= nid(0)) !-> nid(0),
(nid(1) <= nid(2)) !-> nid(2) nid(0),
(nid(2) <= nid(1)) !-> nid(1) nid(0)

) ++ (
(nid(1) <= nid(0)) !-> nid(0),
(nid(2) <= nid(0)) !-> nid(0),
(nid(1) <= nid(2)) !-> nid(2) nid(1) nid(0),
(nid(2) <= nid(1)) !-> nid(1) nid(0)

)
) >

The above term illustrates a concrete example of a divergence

point object. It maintains a history of size 2, which records the past

two link consumption (consume), path announcements (produce),
control plane information (all-rib, all-rib-in), and records

On the Automated Verification of BGP Convergence PPDP ’25, September 10–11, 2025, Rende, Italy

the initial queue contents (init) two-step before the current state

accordingly.

Nodes and the bookkeeping structure are wrapped in a single

term to ensure full rewriting on the whole system.

sort BGP .
op {_} : Configuration -> BGP [ctor] .

To signal successful detection of divergence during a search, we

introduce a special constant object:

op diverged : -> Configuration [ctor] .

This object is inserted into the configuration when the diver-

gence point condition is met, terminating the search.

6.2 Rewrite Rules
Maude transitions are specified via rewrite rules, which model the

operational semantics of BGP node behavior as defined by the SPVP

model.

Rewrite Configuration. To achieve efficient bookkeeping and

searching, we introduce two rewrite configurations to be speci-

fied by the user before the search starts to narrow down and divide

the search space.

• sp-links: We categorize all message links in the system into

two types: sp-links and non-sp-links, where sp-links are links
that are involved in the trace segment between divergence

points, while non-sp-links are the remaining links. By speci-

fying sp-links, the system will search for states that oscillate

only between those links. This further eliminates the need

for storing history queue and control plane information of

non-sp-links, as well as supporting us to clear the history

when non-sp-links are touched, and can thus largely help cut

the state space.

• sp-recur-size: The exact number of steps involved in the os-

cillation proof, i.e., between two divergence points. By fixing

this number, the system no longer needs to save history for

longer than sp-recur-size steps, and will populate bookkeep-

ing state when exceeded.

Rule. The main rewrite rule takes the following form:

rl [process-queue] : {
C < A : NodeClass | id : N,

queue : ((N <= N') !-> Msg :: Tail) ; Q, ... >
< DPC : DPClass | ... >

}
=>
if dp-check(dpc: < DP : DPClass | ... >)
then { diverged ... }
else {

nodes-update(...)
if (N <= N') in sp-links then

dp-update(updates: ..., sys: ...)
else
dp-clear(sys: ...)

fi
}
fi .

At each step, the rule will first check if the divergence criterion

is satisfied based on the bookkeeping term. If so, a divergence flag

will be inserted. Otherwise, as modeled in SPVP, a node processes

the first message in one of its incoming queues through pattern

matching, potentially updates its state, and produces new path

announcements to neighbors if needed. The bookkeeping object

is cleared whenever the rewritten link is not in the sp-links, and is

updated otherwise.

Rules are defined to preserve asynchrony: at each rewrite step, a

node processes the message from an arbitrary non-empty queue.

To enable verification, the rewrite engine can be asked to search

for a state where the divergence flag is inserted.

6.3 Search Space Reduction
While our rewriting logic framework enables precise modeling and

analysis of BGP convergence behavior, the state space for model

checking remains prohibitively large in general. This agrees with

observations in the literature [17]. This section introduces two key

optimizations that significantly reduce the search space and make

verification feasible even for larger networks.

We identify two sources of combinatorial explosion:

• Rewrite Configuration Combinatorics. As introduced in

Section 6.2, users must specify a set of sp-links – the subset

of network links suspected of participating in divergence.

However, for a network with 𝑛 links, the number of such

subsets is exponential in size. Exhaustively enumerating

these configurations is computationally infeasible.

• Message Interleaving Explosion. BGP’s asynchronous
nature means that messages can be processed in arbitrarily

different orders. For large networks, this leads to a vast num-

ber of rewrite interleavings, even when only a small portion

of the network contributes to divergence.

We address these issues using two complementary techniques.

Extract sp-links from SMT unsat core. A key insight from Section 4

is that the SMT solver’s unsat core pinpoints the specific constraints

responsible for the failure of guaranteeing BGP convergence. These

constraints correspond to path preference conflicts that arise from

particular network links. Therefore, links appearing in the unsat

core can be useful to be specified as the sp-links for the system to

search for divergence. We thus use the SMT-derived unsat core to

initialize the set of sp-links automatically. This avoids the need for

manual or exhaustive enumeration and sharply reduces the search

space to only those parts of the network that may be involved in

the potential oscillation.

Atomic Rewrite for Non-sp-links. Our second optimization is

based on the observation that links outside of sp-links usually do not
participate in the divergence pattern. Therefore, the specific order

in which messages on non-sp-links are processed might not affect

the existence of a divergence trace, in which cases, interleavings

among them are semantically irrelevant.

To exploit this, we introduce an atomic rewrite rule that pro-

cesses the head of all non-empty non-sp-links in a single step. This

reduces the interleaving among non-critical parts of the network

and allows the rewrite engine to focus on meaningful variations in

the behavior of sp-links.

PPDP ’25, September 10–11, 2025, Rende, Italy Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

crl [process-atomic] : { Conf1 } => { Conf2 }
if Nodes2 := nodes-update-all(

sys: Conf1,
links: non-empty-non-sp-links)

/\ DPC2 := dp-clear(sys: Nodes2)
/\ Conf2 := DPC2 Nodes2 .

where nodes-update-all computes all the nodes in the configura-

tion Conf1with non-sp-links and non-empty queues; and dp-clear
executes the BGP algorithm, i.e., consuming the head of the nodes’s

queues, and adding to queues messages produced by link sources.

It must be pointed out that these heuristics are sound as no new

behaviors are introduced by using atomic steps for non-sp-links.
They, however, may lead to the tool not identifying a witnessing

counterexample with the divergence. This happens, for example,

with the bad gadget described at the end of Section 5.2 for which our

formalization is not capable of finding a suitable counterexample.

7 Evaluation

0

1 2

3 4

120
10

210
20

30 430
420

a. Good Gadget

0

1 2

3 4

120
10

210
20

3420
30

430
420

b. Naughty Gadget

0

1 2120
10

210
20

c. Disagree Gadget

Figure 5: Base Gadgets

All experiments were run on a Windows 11 Home 24H2 machine,

with an Intel Core i7-14700KF CPU, consisting of 64 GB of RAM,

with Python 3.12.7 using Maude python bindings 1.4.0 [11] and

cvc5 1.2.0. We run experiments on Good Gadget, Naughty Gadget,

Disagree Gadget as seen in Figure 5. Naughty Gadget and Disagree

Gadget have been discussed in previous sections, both are known

to be able to diverge. Good Gadget instead is known to have a

corresponding routing algebra that is monotonic and therefore

always converges. We also run experiments by building larger

gadgets using combinations of the three previously mentioned

gadgets as base gadgets. When we create a combination in these

experiments, we use gadgets where all but one are equivalent to

the Good Gadget and the remaining is the gadget denoted in the

first column. The total number of base gadgets used to create the

gadget used for each experiment is denoted size and is reported in

the second column. Thus, 𝑠𝑖𝑧𝑒 − 1 gadgets are Good Gadget and the

remaining gadget is the one recorded in the first column. The third

column shows a tuple consisting of the number of nodes (#N), the

number of links (#L), and the number of paths (#P) respectively in

the corresponding gadget. The fourth column shows the amount of

time in seconds it took to create the corresponding formulas for the

SMT solver and then running the solver to check for convergence of

the gadget, including the time it takes to compute the unsat core if

necessary. The fifth and last column displays the amount of time in

seconds it took to run the Maude implementation to find a trace that

would oscillate resulting in the divergence. We provide experiments

for when both SMT and Maude (or just SMT when the gadget

converges) are able to terminate with a solution within an hour. If

the gadget converges, there’s no oscillating trace that can be found

and we instead report N/A since we don’t run the Maude program

for these gadgets. There are three tables corresponding to the three

types of gadgets we used, the base gadgets, rooted combination
gadgets, and nested combination gadgets. The two combinations are

constructed in a way such that the combined gadget diverges if and

only if at least one of of the gadgets used to create it diverges. This

is shown as we discuss how these combined gadgets are created.

Gadget Size (#N, #L, #P) SMT (s) Maude (s)
Good 1 (5, 11, 7) 0.026 N/A

Disagree 1 (5, 11, 8) 0.028 0.369

Naughty 1 (3, 4, 4) 0.018 0.121

Table 4: Base Gadget Results

The first combination type we denote as a rooted combination.
We take 𝑛 gadgets, 𝑔1, 𝑔2, ..., 𝑔𝑛 as input to construct a new gadget.

First, we create a new node 𝑂 as the new common destination.

Then, we draw a link from each common destination 𝑂𝑔𝑖 for 𝑔𝑖 to

𝑂 . Finally, every existing path in each gadget is appended with the

new common destination𝑂 , and each𝑂𝑔𝑖 is given a policy for path

preferences only consisting of (𝑂𝑔𝑖 ,𝑂).
For example, suppose we construct a rooted combination of Good

Gadget as 𝑔1 and Disagree Gadget as 𝑔2 as seen in Figure 6. Then

the path (1, 2, 0) from Disagree Gadget becomes (2 : 1, 2 : 2, 2 : 0, 0)
by first tagging each node with the instance number 2, the index of

Disagree Gadget from the list of inputs, then appending the global

node 0.

It is clear that no two gadgets 𝑔𝑖 , 𝑔 𝑗 for 𝑖 ≠ 𝑗 will have a path

that traverses nodes from both gadgets. This means that we can

essentially treat each gadget independently in the new combined

gadget for the purposes of determining if BGP will converge or

diverge. Hence, if some gadget 𝑔𝑖 diverges then the new combined

gadget will also diverge. Our machinery is able to handle gadgets

constructed using the rooted combination consisting of up to 500

nodes, 1200 links, and 800 paths.

Gadget Size (#N, #L, #P) SMT (s) Maude (s)
Good 2 (11, 24, 16) 0.122 N/A

Naughty 2 (11, 24, 17) 0.113 1.39

Disagree 2 (9, 17, 13) 0.068 0.238

Good 5 (26, 60, 40) 0.728 N/A
Naughty 5 (26, 60, 41) 0.66 3.585

Disagree 5 (24, 53, 37) 0.542 0.596

Good 10 (51, 120, 80) 3.074 N/A
Naughty 10 (51, 120, 81) 2.636 9.601

Disagree 10 (49, 113, 77) 2.352 1.794

Good 50 (251, 600, 400) 223.523 N/A
Naughty 50 (251, 600, 401) 68.336 209.484

Disagree 50 (249, 593, 397) 66.953 58.908

Good 100 (501, 1200, 800) 2655.43 N/A
Naughty 100 (501, 1200, 801) 324.879 862.888

Disagree 100 (499, 1193, 797) 292.157 240.22

Table 5: Rooted Combination Results

On the Automated Verification of BGP Convergence PPDP ’25, September 10–11, 2025, Rende, Italy

0

1 : 0

1 : 1 1 : 2

1 : 3 1 : 4

2 : 0

2 : 1 2 : 2

(1 : 0, 0)

(1 : 1, 1 : 3, 1 : 0, 0)
(1 : 1, 1 : 0, 0)

(1 : 2, 1 : 1, 1 : 0, 0)
(1 : 2, 1 : 0, 0)

(1 : 3, 1 : 0, 0)

(1 : 4, 1 : 3, 1 : 0, 0)
(1 : 4, 1 : 2, 1 : 0, 0)

(2 : 0, 0)

(2 : 1, 2 : 2, 2 : 0, 0)
(2 : 1, 2 : 0, 0)

(2 : 2, 2 : 1, 2 : 0, 0)
(2 : 2, 2 : 0, 0)

Figure 6: Rooted Combination Using Good and Disagree Gadgets

The other combination type we call a nested combination. This
combination takes two gadgets 𝑔𝑎 and 𝑔𝑏 as inputs to construct

a new gadget 𝑔𝑎𝑏 . The first step of this type is to replace every

node in 𝑔𝑎 that is not its common destination 𝑂𝑔𝑎 with the nodes

and links (but not paths) of gadget 𝑔𝑏 . 𝑂𝑔𝑎 becomes the common

destination of the newly created nested combination 𝑔𝑎𝑏 . Only the

nodes corresponding to the common destination in 𝑔𝑏 , 𝑂𝑔𝑏 , will

have a link that directly connects them to 𝑂𝑔𝑎 . We denote each

newly created node as 𝐴 : 𝐵 where 𝐴 refers to a node from 𝑔𝑎 and

𝐵 refers to a node from 𝑔𝑏 . Now, at each node 𝐴 : 𝐵 to determine

the policy for its path preference we compute the following: for

each path 𝑝𝑎 = (𝑢1, 𝑢2, . . . , 𝑢𝑚,𝑂𝑔𝑎) in the policy for node 𝐴 from

𝑔𝑎 , for each path 𝑝𝑏 = (𝑣1, 𝑣2, . . . , 𝑣𝑛,𝑂𝑔𝑏) in the policy for node 𝐵

from 𝑔𝑏 , we create the path:

𝑝𝑎 ◦ 𝑝𝑏 = (𝑢1, 𝑢2, . . . , 𝑢𝑚,𝑂𝑔𝑎) ◦ (𝑣1, 𝑣2, . . . , 𝑣𝑛,𝑂𝑔𝑏)
= (𝐵 : 𝑣1, . . . , 𝐵 : 𝑣𝑛, 𝐵 : 𝑂𝑔𝑏 , 𝑢2 : 𝑂𝑔𝑏 , . . . , 𝑢𝑚 : 𝑂𝑔𝑏 ,𝑂𝑔𝑎)

An example using Disagree Gadget as 𝑔𝑎 and Good Gadget as 𝑔𝑏
to create a nested combination is shown in Figure 7. As an example

of generating the image of the paths of a gadget, the good gadget

path (1, 3, 0) becomes two paths by composing the image of the

disagree paths (1, 2, 0) and (1, 0), namely (1 : 0, 2 : 0, 0) and (1 : 0, 0)
to the image (1 : 1, 1 : 3, 1 : 0) of (1, 3, 0). Thus we have:

(1 : 1, 1 : 3, 1 : 0) ◦ (1 : 0, 2 : 0, 0) = (1 : 1, 1 : 3, 1 : 0, 2 : 0, 0)
𝑎𝑛𝑑

(1 : 1, 1 : 3, 1 : 0) ◦ (1 : 0, 0) = (1 : 1, 1 : 3, 1 : 0, 0)

To create larger nested combinations from more than two inputs

we chain together the constructions using intermediate gadgets

created as input for the next combination. For example if we want

to combine gadgets 𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 in a nested combination we first com-

pute the nested combination 𝑔𝑎𝑏 using gadgets 𝑔𝑎 and 𝑔𝑏 , then we

compute the combination using 𝑔𝑎𝑏 and 𝑔𝑐 for the final combina-

tion.

The way these type of gadgets are constructed preserves the path

preferences of the original gadgets. If path 𝑝𝑎 was more preferred

than 𝑞𝑎 from gadget 𝑔𝑎 , then path 𝑝𝑎 ∗ 𝑝𝑏 is more preferred than

path 𝑞𝑎 ∗𝑞𝑏 for any paths 𝑝𝑏 , 𝑞𝑏 from gadget𝑔𝑏 . A similar argument

can be made to show that path preferences are conserved for gadget

𝑔𝑏 . Suppose that 𝑔𝑏 diverges and we can find a trace that oscillates.

For any image of 𝑔𝑏 in the nested gadget, this oscillating trace can

be translated to an oscillating trace involving only nodes of the

image gadget.

Now, suppose that 𝑔𝑎 diverges and we can find a trace that

oscillates. Then, consider only the nodes that were created from

𝑂𝑔𝑏 . This will resemble the original 𝑔𝑎 and a similar trace can be

found, thus showing divergence. Hence, if 𝑔𝑎 or 𝑔𝑏 diverges then

𝑔𝑎𝑏 diverges.

In our experiments we choose 𝑔𝑎 as the gadget named in column

one in the tables and all other gadgets used in the construction are

chosen as the Good Gadget. We are only able to handle gadgets

consisting of up to 100 nodes and 400 links, roughly a fifth of the

amount of nodes for root combination before reaching the time

limit of an hour. The number of paths in nested combinations grows

much faster than the number of paths in rooted combinations,

reaching up to 700 paths after two nested combinations on three

gadgets. This seems to cause the SMT solver to become a bottleneck

much faster, as the monotonicity constraints require us to iterate

over every pair of paths in the gadget, making it more difficult for

the solver to find a solution. The Maude implementation may find

a suitable trace within the hour time if given the proper parameters

as input, since the absolute number of paths does not impact the

performance nearly as much as the number of nodes and links do.

Gadget Size (#N, #L, #P) SMT (s) Maude (s)
Good 2 (21, 72, 63) 4.86 N/A

Naughty 2 (21, 72, 71) 5.251 4.518

Disagree 2 (11, 34, 32) 0.889 0.25

Good 3 (101, 384, 623) 1744.585 N/A
Naughty 3 (101, 384, 687) 420.453 114.87

Disagree 3 (51, 190, 312) 96.773 2.608

Table 6: Nested Combination Results

8 Related Work
We take inspiration from related work, in particular, the Metarout-

ing framework [7, 12] and existingModel-Checking approaches [15–

17]. The main difference, however, is our goal of providing auto-

mated checks, which are sound and scalable.

Metarouting [7, 12] provides a general mathematical framework

for determining whether a BGP network gadget converges. A key

PPDP ’25, September 10–11, 2025, Rende, Italy Gerald Whitters, Haoyun Qin, Boon Loo, and Carolyn Talcott

0

1 : 0

1 : 1 1 : 2

1 : 3 1 : 4

2 : 0

2 : 1 2 : 2

2 : 3 2 : 4

(1 : 0, 2 : 0, 0)
(1 : 0, 0)

(1 : 1, 1 : 3, 1 : 0, 2 : 0, 0)
(1 : 1, 1 : 3, 1 : 0, 0)
(1 : 1, 1 : 0, 2 : 0, 0)

(1 : 1, 1 : 0, 0)

(1 : 2, 1 : 1, 1 : 0, 2 : 0, 0)
(1 : 2, 1 : 1, 1 : 0, 0)
(1 : 2, 1 : 0, 2 : 0, 0)

(1 : 2, 1 : 0, 0)

(1 : 3, 1 : 0, 2 : 0, 0)
(1 : 3, 1 : 0, 0)

(1 : 4, 1 : 3, 1 : 0, 2 : 0, 0)
(1 : 4, 1 : 3, 1 : 0, 0)

(1 : 4, 1 : 2, 1 : 0, 2 : 0, 0)
(1 : 4, 1 : 2, 1 : 0, 0)

(2 : 0, 1 : 0, 0)
(2 : 0, 0)

(2 : 1, 2 : 3, 2 : 0, 1 : 0, 0)
(2 : 1, 2 : 3, 2 : 0, 0)
(2 : 1, 2 : 0, 1 : 0, 0)

(2 : 1, 2 : 0, 0)

(2 : 2, 2 : 1, 2 : 0, 1 : 0, 0)
(2 : 2, 2 : 1, 2 : 0, 0)
(2 : 2, 2 : 0, 1 : 0, 0)

(2 : 2, 2 : 0, 0)

(2 : 3, 2 : 0, 1 : 0, 0)
(2 : 3, 2 : 0, 0)

(2 : 4, 2 : 3, 2 : 0, 1 : 0, 0)
(2 : 4, 2 : 3, 2 : 0, 0)

(2 : 4, 2 : 2, 2 : 0, 1 : 0, 0)
(2 : 4, 2 : 2, 2 : 0, 0)

Figure 7: Nested Combination Using Disagree and Good Gadgets

limitation of the original work is the lack of fully automated meth-

ods for checking for convergence. The recent paper by Daggit and

Griffin [4] has formalized the theoretical framework in Agda, which

provides a means for proving convergence of network gadgets in

a semi-automated fashion. The framework also enables the explo-

ration of different convergence conditions through mechanized

reasoning. We take a different approach by encoding the condi-

tions proposed as a SMT problem. This enables the fully automated

verification of network gadgets.

The second body of work uses model-checking approaches to

determine BGP convergence and also to determine witnesses for

divergence. Previous work [17] formalized the BGP algorithm and

the BGP problem as LTL liveness formulas in Promela. However,

the experiments demonstrate the complexity of the BGP conver-

gence problem as Promela was not able to determine divergence

of gadgets with less than 5 nodes. Our proposal is to reduce the

liveness problem to a safety problem as suggested in the litera-

ture [2]. Model-checkers typically perform better when proving

safety properties as one can exploit different types of reduction

techniques. This enabled our model-checking to verify networks

with hundreds of nodes.

Wang et al. [16] proposed another formalization in Maude. How-

ever, while the performance is adequate, it is not sound. In particular,

it can generate false counter examples. This seems to occur in gad-

gets for which BGP may sometimes converge, but sometimes also

diverge. This is because the definition of divergence is not precise

enough.We propose, on the other hand, a definition for determining

divergence that is sound and scalable.

Wang et al. [13, 14] have also proposed methods to improve

the scalability of model-checking. In [14], the authors exploit the

structure of network to reduce the verification problem. For ex-

ample, they identify sub-nets that are duplicated which can be

reduced to a single sub-net when checking for divergence. We take

an alternative approach by exploiting the unsat core of the SMT

solver checking the formalization of Metarouting conditions. In

[13], Wang et al. encode the BGP convergence problem in Answer

Set Programming. The approach scales well reaching some thou-

sands of nodes. However, it is not capable of providing concrete

examples for divergence.

This also illustrates another key difference to existing meth-

ods. We propose a verification flow that combines SMT solver and

executable specification in Maude. This enables us to exploit the

advantages enabled by each method, e.g., the use of SMT solvers to

simplify the model-checking problem.

9 Conclusions
This paper revisits the problem of BGP convergence verification,

aiming to develop a sound, scalable, and automated verification

approach. The key insight is to combine different automated verifi-

cation techniques. By encoding the Metarouting convergence crite-

rion using an SMT solver, we not only automate the convergence

check but also leverage the solver’s ability to generate unsatisfiable

cores. These cores highlight the critical links responsible for mono-

tonicity failing to hold, which in turn helps reduce the complexity

of the model-checking problem. We reduce the model-checking

task to a reachability analysis of divergent points, based on a sound

divergence criterion introduced in this paper.

There are several future directions. The proposed criterion is

sound, but not shown to be complete. We are also considering how

to express more realistic implementations of preference relations,

e.g., using pseudo-code.

Acknowledgments
This research is funded in part by the Ashton Fellowship at the Uni-

versity of Pennsylvania, the GEM Fellowship, and NSF IIS-2436080.

References
[1] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres

Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare

Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
Dana Fisman and Grigore Rosu (Eds.). Springer International Publishing, Cham,

415–442.

On the Automated Verification of BGP Convergence PPDP ’25, September 10–11, 2025, Rende, Italy

[2] Armin Biere, Cyrille Artho, and Viktor Schuppan. 2002. Liveness Checking as

Safety Checking. In 7th International ERCIM Workshop in Formal Methods for
Industrial Critical Systems, FMICS 2002, ICALP 2002 Satellite Workshop, Málaga,
Spain, July 12-13, 2002 (Electronic Notes in Theoretical Computer Science, Vol. 66),
Rance Cleaveland andHubert Garavel (Eds.). Elsevier, 160–177. doi:10.1016/S1571-

0661(04)80410-9

[3] Manuel Clavel, FranciscoDurán, Steven Eker, Patrick Lincoln, NarcisoMartí-Oliet,

José Meseguer, and Carolyn Talcott. 2007. All About Maude: A High-Performance
Logical Framework. LNCS, Vol. 4350. Springer.

[4] Matthew L. Daggitt and Timothy G. Griffin. 2024. Formally Verified Convergence

of Policy-Rich DBF Routing Protocols. IEEE/ACM Trans. Netw. 32, 2 (2024),

1645–1660. doi:10.1109/TNET.2023.3326336

[5] Lixin Gao and Jennifer Rexford. 2000. Stable Internet routing without global

coordination. SIGMETRICS Perform. Eval. Rev. 28, 1 (June 2000), 307–317. doi:10.
1145/345063.339426

[6] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. 2002. The stable

paths problem and interdomain routing. IEEE/ACM Trans. Netw. 10, 2 (April

2002), 232–243. doi:10.1109/90.993304

[7] Timothy G. Griffin and Joäo Luís Sobrinho. 2005. Metarouting. In Proceedings of
the 2005 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (Philadelphia, Pennsylvania, USA) (SIGCOMM ’05).
Association for Computing Machinery, New York, NY, USA, 1–12. doi:10.1145/

1080091.1080094

[8] Timothy G. Griffin and Gordon Wilfong. 1999. An analysis of BGP convergence

properties. SIGCOMM Comput. Commun. Rev. 29, 4 (Aug. 1999), 277–288. doi:10.
1145/316194.316231

[9] Ratul Mahajan, David Wetherall, and Tom Anderson. 2002. Understanding BGP

misconfiguration. SIGCOMM Comput. Commun. Rev. 32, 4 (Aug. 2002), 3–16.

doi:10.1145/964725.633027

[10] Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway Protocol 4

(BGP-4). RFC 4271. doi:10.17487/RFC4271

[11] Rubén Rubio. 2022. Maude as a Library: An Efficient All-Purpose Programming

Interface. In Rewriting Logic and Its Applications: 14th International Workshop,
Revised Selected Papers. Springer-Verlag, Berlin, Heidelberg, 274–294. doi:10.1007/
978-3-031-12441-9_14

[12] João Luis Sobrinho. 2003. Network routing with path vector protocols: theory and

applications. In Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (Karlsruhe, Germany)

(SIGCOMM ’03). Association for Computing Machinery, New York, NY, USA,

49–60. doi:10.1145/863955.863963

[13] Anduo Wang and Zhijia Chen. 2019. Internet Routing and Non-monotonic Rea-

soning. In Logic Programming and Nonmonotonic Reasoning - 15th International
Conference, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings (Lec-
ture Notes in Computer Science, Vol. 11481), Marcello Balduccini, Yuliya Lierler,

and Stefan Woltran (Eds.). Springer, 51–57. doi:10.1007/978-3-030-20528-7_5

[14] AnduoWang, Alexander J. T. Gurney, XianglongHan, Jinyan Cao, Boon Thau Loo,

Carolyn L. Talcott, and Andre Scedrov. 2014. A reduction-based approach towards

scaling up formal analysis of internet configurations. In 2014 IEEE Conference on
Computer Communications, INFOCOM 2014, Toronto, Canada, April 27 - May 2,
2014. IEEE, 637–645. doi:10.1109/INFOCOM.2014.6847989

[15] AnduoWang, Carolyn Talcott, Alexander J. T. Gurney, Boon Thau Loo, and Andre

Scedrov. 2012. Reduction-based formal analysis of BGP instances. In Proceedings
of the 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Tallinn, Estonia) (TACAS’12). Springer-Verlag, Berlin,
Heidelberg, 283–298. doi:10.1007/978-3-642-28756-5_20

[16] Anduo Wang, Carolyn Talcott, Limin Jia, Boon Thau Loo, and Andre Scedrov.

2011. Analyzing BGP instances in Maude. In Proceedings of the Joint 13th IFIP
WG 6.1 and 30th IFIP WG 6.1 International Conference on Formal Techniques for
Distributed Systems (Reykjavik, Iceland) (FMOODS’11/FORTE’11). Springer-Verlag,
Berlin, Heidelberg, 334–348.

[17] Ping Yin, Yinxue Ma, and Zhe Chen. 2014. Model Checking the Convergence

Property of BGP Networks. J. Softw. 9, 6 (2014), 1619–1625. doi:10.4304/JSW.9.6.

1619-1625

https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1109/TNET.2023.3326336
https://doi.org/10.1145/345063.339426
https://doi.org/10.1145/345063.339426
https://doi.org/10.1109/90.993304
https://doi.org/10.1145/1080091.1080094
https://doi.org/10.1145/1080091.1080094
https://doi.org/10.1145/316194.316231
https://doi.org/10.1145/316194.316231
https://doi.org/10.1145/964725.633027
https://doi.org/10.17487/RFC4271
https://doi.org/10.1007/978-3-031-12441-9_14
https://doi.org/10.1007/978-3-031-12441-9_14
https://doi.org/10.1145/863955.863963
https://doi.org/10.1007/978-3-030-20528-7_5
https://doi.org/10.1109/INFOCOM.2014.6847989
https://doi.org/10.1007/978-3-642-28756-5_20
https://doi.org/10.4304/JSW.9.6.1619-1625
https://doi.org/10.4304/JSW.9.6.1619-1625

	Abstract
	1 Introduction
	2 Border Gateway Protocol
	2.1 BGP By Example
	2.2 Metarouting

	3 Verification Workflow
	4 Automating BGP Convergence Check with SMT
	4.1 Computing a Monotonic Global Ranking
	4.2 Extracting Links of Interest From an Unsatisfiable Core

	5 Sound Criterion of BGP Divergence
	5.1 Formal Network Setup and Execution Model
	5.2 BGP Divergence Criterion
	5.3 Example

	6 Formalizing Criteria in Rewriting Logic
	6.1 System Modeling
	6.2 Rewrite Rules
	6.3 Search Space Reduction

	7 Evaluation
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

