
Towards Full Stack Adaptivity in Permissioned Blockchains

Chenyuan Wu
University of Pennsylvania
wucy@seas.upenn.edu

Mohammad Javad Amiri
Stony Brook University
amiri@cs.stonybrook.edu

Haoyun Qin
University of Pennsylvania

qhy@seas.upenn.edu

Bhavana Mehta
University of Pennsylvania
bhavanam@seas.upenn.edu

Ryan Marcus
University of Pennsylvania
rcmarcus@seas.upenn.edu

Boon Thau Loo
University of Pennsylvania
boonloo@seas.upenn.edu

ABSTRACT

This paper articulates our vision for a learning-based untrustworthy

distributed database. We focus on permissioned blockchain systems

as an emerging instance of untrustworthy distributed databases

and argue that as novel smart contracts, modern hardware, and new

cloud platforms arise, future-proof permissioned blockchain sys-

tems need to be designed with full-stack adaptivity in mind. At the

application level, a future-proof system must adaptively learn the

best-performing transaction processing paradigm and quickly adapt

to new hardware and unanticipated workload changes on the fly.

Likewise, the Byzantine consensus layer must dynamically adjust it-

self to the workloads, faulty conditions, and network configuration

while maintaining compatibility with the transaction processing

paradigm. At the infrastructure level, cloud providers must enable

cross-layer adaptation, which identifies performance bottlenecks

and possible attacks, and determines at runtime the degree of re-

source disaggregation that best meets application requirements.

Within this vision of the future, our paper outlines several research

challenges together with some preliminary approaches.

PVLDB Reference Format:

Chenyuan Wu, Mohammad Javad Amiri, Haoyun Qin, Bhavana Mehta,

Ryan Marcus, and Boon Thau Loo. Towards Full Stack Adaptivity in

Permissioned Blockchains. PVLDB, 17(5): XXX-XXX, 2023.

doi:XX.XX/XXX.XX

1 INTRODUCTION

Today’s large-scale distributed data management systems need to

deal with untrustworthy environments where multiple mutually

distrustful entities communicate with each other, and maintain

data on untrusted infrastructure. By relying on Byzantine fault-

tolerant (BFT) protocols, untrustworthy distributed databases, in

particular, permissioned blockchain systems, have enabled a large

class of distributed applications ranging from contact tracing [63],

crowdworking [8], supply chain assurance [9, 79], and federated

learning [64]. In fact, the popularity of these services has moti-

vated cloud providers (e.g., Amazon [1, 2], IBM [3], Oracle [4],

Alibaba [83]) to offer Blockchains-as-a-Service (BaaS) [28]. How-

ever, there are two categories of outstanding challenges for today’s

permissioned blockchain systems:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 5 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Challenge 1 (Software): No one-size-fits-all transaction man-

agement paradigm. Different applications may exhibit different

workload characteristics, such as read/write ratios, skewness of pop-

ular keys, and compute intensity. A proliferation of permissioned

blockchain systems is proposed to address these workload varia-

tions, e.g., Tendermint [49], Fabric [11], Fabric++ [74], Fabric# [71],

Streamchain [44], ParBlockchain [7], and BIDL [67]. These systems

present different transaction management paradigms, including

the sequence in which ordering, execution, and validation are per-

formed, the number of transactions in a block, stream processing

(with no blocks), and the use of reordering and early aborts.

Moreover, each such paradigm can be further customized with a

broad spectrum of Byzantine fault-tolerant (BFT) protocols, such

as PBFT [20], Q/U [5], FaB [56], Zyzzyva [48], Prime [6], Cheap-

BFT [45], SBFT [40], HotStuff [85], Themis [46], PoE [41], and

Kauri [60]. These BFT protocols also embody different design choices,

including commitment strategy, number of communication phases,

and leader replacement mechanism, etc. [10].

Past studies [22, 34] have shown that different systems are opti-

mal for different workloads and faulty conditions. Unfortunately,

current users have to choose a fixed paradigmwith a predetermined

BFT protocol, potentially resulting in poor performance, as no single

configuration provides dominant performance. Even when the user

has control over the entire blockchain stack, choosing the right

configuration is not easy, given the large search space of paradigms

and BFT protocols. Moreover, the workload may shift as different

parties join or leave the network, and client requests fluctuate with

different patterns throughout the day. Malicious participants might

carry out dynamic multi-vector attacks as well. Of course, one could

imagine building a static mapping from the workload and attack

characteristics to optimal configurations ś but this mapping would

(1) be cumbersome to compute, (2) depend on the underlying hard-

ware, (3) still be suboptimal for workloads that shift unexpectedly

over time, and (4) necessitate recomputing the mapping each time

a new paradigm or BFT protocol is proposed.

Challenge 2 (Hardware): No one-size-fits-all resource provi-

sioning. Smart contracts have been traditionally used to perform

memory-intensive operations such as retrieving customer profiles

stored in large databases [30]. However, recent advancements in de-

centralized applications [27, 32, 37, 66, 86] have showcased compute-

intensity in smart contracts, where machine learning algorithms

are integrated on-chain. Cortex Blockchain [27], for instance, offers

a decentralized lending platform that leverages machine learning

algorithms to determine interest rates based on individual credit his-

tories. This transparency fosters trust, prevents discrimination, and

ensures fairness throughout the lending process. Moreover, a smart



contract can interchangeably be compute- and memory-intensive

at different times and execution stages, exhibiting dynamic and

heterogeneous resource requirements.

Current BaaS offers a convenient way for users to manage their

resources. However, the current rigid BaaS infrastructure poorly

supports such heterogeneous resource demands. First, to ensure

high-throughput services over various workloads, servers are usu-

ally over-provisioned, leading to low utilization of certain or all

types of resources as well as high cost for BaaS users. Second, as

workloads evolve, it is hard to scale up/down resources indepen-

dently and seamlessly, e.g., expanding/shrinking memory resources

independent of CPUs without pausing transactions. These limi-

tations stem from the fact that data center resources have been

traditionally arranged in monolithic servers, which contain fixed

compute, memory, and storage resources for processing jobs. Thus,

deploying smart contracts with diverse resource demands requires

a radical rethinking of existing BaaS infrastructure.

This paper articulates our vision for FAB, an adaptive framework

for untrustworthy distributed databases, which leverages machine

learning techniques to address the above challenges. The focus of

this paper is mainly on permissioned blockchain systems, as it is

the most notable instance of untrustworthy distributed databases.

FAB is designed with full-stack adaptivity in mind. First, FAB not

only needs to adaptively choose the best transaction management

paradigm in order to maximize performance for dynamic work-

loads, but also quickly adapt to new hardware and unanticipated

workload changes on-the-fly. Second, the BFT protocol chosen for

consensus should also automatically adapt to the dynamic work-

loads, ever-changing faulty conditions, and network configuration

while maintaining safety and liveness. Finally, at the infrastructure

level, FAB leverages resource disaggregation [33, 73, 87, 88] when-

ever appropriate in order to adapt to diverse resource demands.

Interestingly, some paradigms and workloads benefit immensely

from a resource-disaggregated setting, while others may backfire ś

motivating the need for a cross-layer adaptation strategy.

2 BACKGROUND

Distributed systems rely on fault-tolerant protocols to provide ro-

bustness and high availability. While cloud systems [18, 26, 29] rely

on crash fault-tolerant protocols [17, 51ś53, 61], to establish con-

sensus, a Byzantine fault-tolerant (BFT) protocol is a key ingredient

in distributed systems with untrustworthy infrastructures [10]. A

BFT protocol runs on a network consisting of a set of nodes that

may exhibit arbitrary, potentially malicious behavior. BFT protocols

use the State Machine Replication (SMR) algorithm [50, 72] where

the system provides a replicated service whose state is mirrored

across different deterministic replicas. At a high level, the goal of a

BFT SMR protocol is to assign each client request an order in the

global service history and execute it in that order [75].

The performance of a given distributed system component de-

pends on the user’s workload and the underlying hardware. Since

choosing the correct configuration of components for a given work-

load and hardware is non-trivial [10], several works have turned

to machine learning techniques [14, 54, 82]. This turn is parallel to

several other fields [36], such as programming languages [21, 42],

image processing [68], and relational databases [80]. Many of these

Figure 1: FAB framework overview.

approaches follow a simple pattern: collect a training set of fea-

tures/configuration/performance triplets, and train a supervised

MLmodel to predict the performance of a given configuration given

some features. While this approach is powerful, it requires gen-

erating an exhaustive training set, which is both expensive and

must be redone whenever new configurations are invented. Thus,

some recent work has shifted towards using reinforcement learning

(RL) [12, 77] in order to learn a policy while the system is running,

in an online fashion [54, 55, 82, 84]. While these RL techniques

avoid costly training set generation, they must balance the explo-

ration of new configurations (e.g., trying a new configuration with

unknown performance) and the exploitation of prior knowledge

(e.g., picking a configuration that worked well in the past).

3 FAB OVERVIEW

In this section, we first provide a running example that motivates

FAB, and then introduce FAB’s system model. Our running example

below is based on supply chain management, which is a cross-

enterprise application that includes untrustworthy entities.

Varying workloads. First, supply chain management involves

different types of transactions, exhibiting different workload char-

acteristics. For instance, when merchants want to check the tem-

perature of certain containers, they issue inspection transactions

which are more read-heavy. When clients purchase some items or

merchants push shipping notices, they issue inventory transactions

which are more write-heavy. Moreover, since some items are more

popular than others, transactions are skewed based on what keys

they accessed. Past studies [22, 34, 82] have shown that depending

on workload and hardware characteristics, the performance of a

given transaction management paradigm can vary drastically. For

example, as shown in Table 1, under a highly compute-intensive

workload A with high skewness but low write ratio, an Execute-

Order-Validate (XOV) with reordering paradigm [74] provides the

best throughput, outperforming the next best by 15%; whereas

under a contentious workload D with high write ratio, the same

paradigm performs worst with near-zero throughput.

Presence of faults. Second, supply chain systems suffer from

different attacks and malicious behaviors [19, 69, 76]. For example,

in the context of COVID-19 vaccine supply chain, attacks on 44

companies involved in the vaccine distribution in 14 countries

[62] are reported. While the safety and liveness of the system are

guaranteed by the BFT consensus, adversaries such as a competing

manufacturer could still slow down the system significantly if a



Table 1: Effective throughput (tps) for each paradigm in the

last 20 episodes of each workload and the convergence time

(minutes) of AdaChain [82].

Workload
Effective Throughput AdaChain’s Conv. Time

XOV+reorder XOV OXII OX AdaChain

A 1532 1415 968 194 1425 2.48
B 897 866 1545 861 1426 0.62
C 3228 3235 940 98 3153 0.48
D 1 272 1494 1498 1447 0.43

Average 1414 1447 1237 663 1862 1.00
Worst 1 272 940 98 1425 2.48

fixed BFT protocol is used consistently. For instance, Zyzzyva [48]

performs well in normal cases, but even with benign crash faults, it

significantly falls behind pessimistic protocols like PBFT [20]. As

another example, if PBFT’s leader is hijacked to broadcast proposals

slowly, the end-to-end system performs poorly, whereas switching

to a robust protocol like Prime [6] avoids such an issue.

Diverse application resource needs. Last but not least, supply

chain management systems demonstrate diverse resource demands

overtime. For instance, once merchants have ordered some items

from the manufacturer, they might frequently query the predicted

delivery time of their items in order to make business planning

accordingly. Such predictions incur regression tasks on-chain, re-

sulting in a higher demand for computation resources than usual.

This case study of supply chain management suggests adaptivity

is not only required, but also needs to be tackled in a full-stack

manner. Given the exponentially large state space and the intricate

interference between actions, we argue that instead of taking on the

Sisyphean task of manually crafting heuristics, machine learning is

a promising solution to achieve such full-stack adaptivity.

System model. Figure 1 presents an overview of FAB, which com-

prises a fixed set of nodes and a finite number of clients. FAB follows

the Byzantine failure model, where up to 𝑓 nodes and any number

of clients may exhibit arbitrary, potentially malicious behavior. We

assume the Byzantine failure model, as it encompasses the crash

failure model, and the non-trustworthiness of nodes is a widely

accepted assumption in most blockchain environments. Clients

submit requests to nodes and await responses from 𝑓 + 1 nodes.

Each node fulfills multiple roles concurrently: orderer, executor, and

learning agent. The orderer ensures the total ordering of blocks,

while the executor executes transactions, updates the ledger, and

responds to clients with the results. The learning agent gathers data

continuously, trains a machine learning model, and dynamically

instructs the accompanying orderer and executor to replace current

transaction management and consensus protocol with more effec-

tive alternatives. Whenever appropriate, the learning agent also

maps the node to resource pools in a disaggregated infrastructure.

In FAB, a faulty node may act arbitrarily in any of its roles.

4 ADAPTING TRANSACTION MANAGEMENT
PARADIGM

As our first step towards adaptive transaction management para-

digms, we have developedAdaChain [82], a strawman solution capa-

ble of selecting the best-performing paradigm at run-time according

to the workload, in the context of permissioned blockchains. Table 1

shows how AdaChain performs compared to other fixed paradigms

when running four different workloads. For each paradigm, we

measured its average and worst throughput across all workloads.

The worst-case throughput metric is useful for understanding how

robustly a paradigm performs when the setup changes. AdaChain

achieved the highest average throughput and the highest worst-

case throughput, demonstrating preliminary adaptivity. We next

outline AdaChain’s limitations and the specific research agenda

required to fully realize FAB’s vision at the transaction layer.

4.1 Learning Framework

Learning Strategies. AdaChain utilizes a reinforcement learning

(RL) approach to provide significant operational benefits: it learns

from its mistakes and optimizes long-term rewards through its tri-

als, without requiring a separate training data collection process

prior to deployment. This would allow the system to adapt to what-

ever new hardware, unseen workloads, and novel paradigms at

hand. However, inside the RL approach, different problem formula-

tions exist, which also result in different algorithms. For instance,

a contextual multi-armed bandit (CMAB) problem which assumes

episodes are independent of each other can be tackled using Thomp-

son sampling [78]. In contrast, a full RL problem where the current

action affects the future state requires DQN [43, 59], A3C [58], etc.

Interestingly, the independence assumption is closely related to

the design of the paradigm-switching mechanism. For example,

the CMAB problem used by AdaChain requires pending blocks of

each episode to be early aborted, which potentially leads to loss of

liveness on a slow client [39] and censorship in blockchains [57].

Moreover, even for the same problem formulation, different types

of predictive models could be used. For instance, a value based

model takes the state (i.e., workload) concatenated with action (i.e.,

paradigm choice) as input, and outputs the predicted performance.

On the other hand, a policy based model predicts simultaneously

the probability of each action being optimal, requiring minimal or

no featurization of the specific action. Therefore, open questions

remain on how different problem formulations and RL algorithms

behave, especially in the novel context of permissioned blockchains.

Featurization. The ledger (e.g., database log) is naturally decen-

tralized across nodes, and it contains rich information about past

transactions. Thus, unless the workload changes at an extremely

rapid rate, each learning agent can extract features from its most

recent ledger to approximate the incoming workload with mini-

mal overhead. To featurize the system’s state, FAB could perform

traditional feature engineering similar to AdaChain, e.g., derive

the write ratio, skewness of keys, and compute-intensity of the

workloads from on-chain data, and use them as input to the predic-

tive model. Alternatively, FAB could also explore automatic state

extraction: deserialize the ledger to form the conflict graph, where

each edge is annotated with the submission and commit timestamp,

and use graph convolutional networks [47] to extract the state au-

tomatically. Further, if using value-based predictive models that

take both the state and action as the input in order to predict the

performance, FAB needs to featurize the design space of paradigms.

Adversarial machine learning. AdaChain’s usage of machine

learning introduces a new performance attack vector: feature data

might be manipulated to cause the learning agent to always pick

a bad paradigm. To carry out this attack, malicious nodes might

propose adversarial feature values to misguide the honest learning



agents. There are at least two ways such adversarial features could

negatively impact performance: (1) decision attacks that target the

inference phase, where an adversary reports false observations of

its own features in order to push the global feature in one direction

or another; and (2) poisoning attacks that target the training phase,

where an adversary reports carefully selected feature values and

labels to cause the next trained model to be inaccurate. To address

both challenges, FAB could utilize randomized smoothing [25, 70],

which recently has been demonstrated effective in the ML commu-

nity. Specifically, instead of using a single reward predictor 𝑅, each

learning agent utilizes a set of predictor {𝑅𝑖 }, where the input to

each predictor is the original feature 𝑥 plus a small perturbation

𝛿𝑖 , where 𝛿𝑖 is sampled from certain distribution depending on the

norm our defense belongs to. The final prediction result is then

voted by {𝑅𝑖 }. This way, FAB has provably consistent output even

when feature 𝑥 is manipulated by adversary within some ranges.

Uncovering new transaction processing paradigms. Another

intriguing research is to figure out whether the learning frame-

work can uncover new effective paradigms that are not previously

explored by human experts. For example, FAB canmix andmatch de-

sign attributes, combining Order-Parallel Execute (i.e., OXII [7]) to-

gether with reordering and early aborts to generate new paradigms.

Specifically, consider three totally ordered transactions and their ac-

cessed keys: 𝑇1 (𝐴), 𝑇2 (𝐴, 𝐵),𝑇3 (𝐵). If no reordering happens, these

transactions need to be executed sequentially even in OXII, whereas

if 𝑇2 is reordered as the first transaction, 𝑇1 and 𝑇3 can be executed

in parallel. Thus, such reordering also requires developing algo-

rithms that prune and minimize the depth of a graph while not

skewing the transaction distribution (i.e., fairness).

4.2 Switching between Paradigms

Finer-grained adaptation. AdaChain’s switching mechanism

works at the granularity of episodes, where each episode is a con-

stant number of blocks. While this approach is able to select the

optimal paradigm among existing ones during an episode, its coarse-

grained operation limits its ability to fully exploit workload char-

acteristics for performance. For example, it only chooses between

enabling/disabling the reordering algorithms used by Fabric++ but

fails to directly learn the final order of each transaction. As an-

other example, it does not allow a certain transaction to go through

the OX pipeline while sending the subsequent one into the XOV

pipeline. In FAB, an interesting direction is to explore adaptation

on a per-transaction basis. At such fine granularity, the featurizer

first needs to be redesigned to encode information about each in-

coming transaction. Second, a policy-based predictive model will

be favored over a value-based one, given the exponentially large

action space. Finally, a special block cut phase could be added to

the adaptation protocol to ensure the learning is consistent for the

same transaction across honest peers. FAB should also study how

to minimize the adaptation overhead at such fine granularity.

5 ADAPTING BFT PROTOCOL

Another aspect of adaptivity is choosing the best-performing BFT

protocol. Previous studies [15, 39] at this layer demonstrate the

potential of adaptive BFT protocols in enhancing systems perfor-

mance under dynamic environments and workloads. Specifically,

Abstract [13, 39] proposed a switching framework for BFT protocols,

where the system can switch protocols in a predefined order when

a certain progress condition is not met, e.g., a client did not receive

enough matching replies. Once the original protocol is aborted by

clients, the next predefined protocol is invoked. Despite ensuring

safety and liveness, such a predefined switching order lacks intel-

ligence and flexibility. This requires careful tuning of switching

heuristics, and achieves even worse performance in many common

scenarios. Based on the same switching mechanism as Abstract,

ADAPT [15] takes one step further, where supervised learning is

utilized to decide the next promising protocol, based on the impact

factors that its Event System (ES) monitors.

Unfortunately, ADAPT still suffers from several major draw-

backs that make it impractical in Byzantine settings. First, it relies

on a single trusted replica to collect data, train the machine learn-

ing model, and then distribute the model to all other replicas. In a

Byzantine environment, such an assumption is not realistic, since

an honest/malicious replica is hard to identify. A malicious replica

could disrupt the training data and training process, resulting in

an inaccurate model and coercing the system to always choose

the protocols with lower performance. It could even łequivocate”

when distributing pre-trained models, resulting in a violation of

liveness. Second, ADAPT requires a cumbersome data collection

process prior to deployment, and assumes training data is complete.

Consequently, ADAPT is unable to adapt to unseen hardware or

workloads. Third, ADAPT is not aware of failures or adversarial

behaviors in the system, and its featurizer (i.e., the Event System)

is marked as future work. Last but not least, ADAPT only cov-

ers a small set of BFT protocols that were proposed more than a

decade ago. Below, we describe our initial solutions as well as future

research agenda in FAB to address the limitations above.

5.1 Learning Framework

Problem formulation. Similar to the transaction management

layer, FAB formulates the selection of the best performing BFT

protocol as a reinforcement learning problem, whose objective

function is maximizing the accumulated reward (i.e., certain user-

defined performance metrics) over time. This brings significant

operational benefits to FAB and is capable of solving trust issues.

Specifically, the state space in the RL problem consists of four cat-

egories of factors: workloads, faults, hardware, and system configu-

ration. Workloads are impacted by clients and the specific content

of their requests, whereas faults can be caused by either network

partition, crashed replicas, dishonest replicas, or even dishonest

clients. Hardware-level factors include network latency and band-

width, as well as machine-level setups like CPU frequency and the

number of cores. System-level configurations include the number

of replicas and their geo-distribution. The interaction of these four

categories of factors constitutes a large state space, which renders

manual crafting of heuristics extremely hard, if not impossible.

The action space includes the choice of candidate protocol, batch

size, as well as the length of the next episode (i.e., the length 𝑘 of

backup instance in Abstract). In FAB, all candidate protocols are

of 𝑛 = 3𝑓 + 1 network size, including PBFT [20], Zyzzyva [48],

RePBFT [31], Prime [6], HotStuff [85], PoE [41], SBFT [40], and

Kauri [60], which embody a wide range of design principles. For



instance, optimistic protocols (e.g., Zyzzyva, PoE, SBFT, and Kauri)

achieve outstanding performance when the system is fault-free, but

could suffer even under benign crash failures. One can transition

to pessimistic protocols (e.g., PBFT and HotStuff), when an opti-

mistic assumption is violated. On the contrary, robust protocols

(e.g., Prime) perform well even under performance attacks, such

as pre-prepare delay and timeout manipulation, but have limited

performance in normal case operations. Moreover, each of the can-

didate protocols has a distinct communication pattern, resulting in

different message complexity and number of phases.

As an initial design, the consensus layer in FAB still proceeds

episode by episode, where each episode is marked by 𝑘 committed

requests. During episode 𝑛, each replica 𝑖 exchanges their locally

observed state 𝑠𝑖
𝑛+1 in order to obtain an agreed global state 𝑠𝑛+1

for the next episode, and the reward 𝑟𝑛 for the current episode will

be collected as well. Once agreement is reached, the (𝑠𝑛, 𝑎𝑛, 𝑟𝑛)

triplet will be added to RL’s experience buffer for future retraining,

and each replica’s deterministic learning agent (i.e., with the same

random seed) would decide the promising protocol 𝑎𝑛+1 to be in-

voked in the next episode. When episode 𝑛 finishes, the switching

subroutine will be called, and episode 𝑛 + 1 begins. Note that the

learning overhead is masked in FAB, since the learning agent is

invoked during the episode 𝑛 when protocol 𝑎𝑛 keeps processing

requests without being interrupted.

Robust online data collection. When achieving adaptivity at

the protocol layer, it is also imperative to ensure both safety and

liveness. While FAB’s safety is guaranteed by the composability

theorem of Abstract [13] and the safety of each candidate protocol,

its liveness relies on the data collection and consequent decision-

making process. Further, the data collected needs to be robust,

preventing malicious replicas from misguiding honest learning

agents to derive poor decisions consistently. Thus, FAB proposes

the following properties that its data collection mechanism needs to

guarantee: (1) consistency ś the state 𝑠𝑛 is identical across all repli-

cas; (2) robustness ś the collected data 𝑠𝑛, 𝑟𝑛 are within a reasonable

range from what an honest node reports.

To guarantee consistency, a straightforward solution is to run

two BFT protocols in parallel, i.e., one for ordering actual client

requests, namely 𝑎𝑛 , and the other for data collection, denoted by𝑑𝑐 .

During episode 𝑛, each replica reports its locally observed state and

reward to the leader of 𝑑𝑐 , once a certain number of requests have

been executed in 𝑛. After the leader gathers a quorum certificate 𝑞𝑐

of reports, 𝑑𝑐 guarantees each replica receives the same 𝑞𝑐 using

consensus. Thus, the state 𝑠𝑛 would be identical across all replicas,

once certain deterministic policy 𝑝 is used to obtain 𝑠𝑛 from 𝑞𝑐 .

In a Byzantine network, since at most 𝑓 replicas may refuse to re-

port their local observations, an honest leader of 𝑑𝑐 is guaranteed to

receive reports from no less than 2𝑓 + 1 replicas, whereas a dishon-

est leader will be replaced by 𝑑𝑐 itself. Inside a collected 𝑞𝑐 of size

2𝑓 + 1, since at most 𝑓 arbitrary values could exist due to Byzantine

reporters, the median value of 𝑞𝑐 (i.e., represented by policy 𝑝) can

be easily proved to fall between the minimum and maximum values

reported by honest replicas. Therefore, robustness is guaranteed.

While the above solution is effective in most cases, a malicious

leader of 𝑎𝑛 could still violate robustness by issuing an in-dark

attack. Specifically, in-dark attacks are common in leader-based

protocols where the malicious leader refuses to send proposals to as

many as 𝑓 honest backups. This would prevent those honest repli-

cas from being involved in the consensus 𝑎𝑛 , and thus they would

report zero or meaningless local observations to the leader of 𝑑𝑐 .

The median value of a 𝑞𝑐 of size 2𝑓 +1would no longer be robust, if

𝑓 of them are zero and 𝑓 of them are arbitrary. FAB addresses such

issue as described below: whenever an honest replica detects itself

to be in-dark attacked, it will refuse to report its own features to

the leader of 𝑑𝑐 , where there is a timer for proposing 𝑞𝑐 ; therefore,

if a replica in 𝑑𝑐 commits a 𝑞𝑐 whose size is less than 2𝑓 + 1, it will

complain to 𝑎𝑛 and initiate a view change as suspecting the leader

of 𝑎𝑛 to be faulty, and 𝑎𝑛+1 will remain the same as 𝑎𝑛 . Since view

change routines can guarantee an honest leader to be chosen in no

more than 𝑓 rounds of view changes, FAB can thus ensure that the

problem can be solved within 𝑓 episodes.

Featurizing faults and protocols. Having discussed how to col-

lect data, the next challenge at the protocol layer is to figure out

what data to collect, i.e., featurization of system state. Among the

four categories of factors in the state space, workloads can be fea-

turized similar to the transaction management layer. Hardware and

system configurations are fairly static during the FAB deployment,

and therefore do not need explicit featurization. Thus, the challenge

is about how to featurize faulty behaviors in the system.

To address this challenge, FAB replies on the following insight:

instead of designing a Byzantine fault detector and characterizing

the fault itself, it is more important to identify how the candidate

protocols are affected by the faults. Specifically, FAB captures the

impact of faults using two features: (1) slow path probability; (2)

timer elapsed values. Modern BFT protocols often utilize dual-path

designs, where a fast path is used for handling fault-free conditions,

while an expensive slower path is triggered when fault/attacks

occur. Thus, the slow path probability 𝑟𝑠𝑙𝑜𝑤 can be derived by

measuring the percentages (probability) of requests committed in

the slow path during a certain window. The fast path probability

is then derived using 1 − 𝑟𝑠𝑙𝑜𝑤 . For non-optimistic protocols, e.g.,

PBFT and Prime, all requests are considered to be in the slow path.

Timer elapsed values represent the gap between timers are initiated

and just before they are reset. This feature contains rich information

about timing-based attacks [6, 24, 65], where a malicious leader

deliberately delays requests without triggering view change.

Besides attacks, for value-based RLmodels [43, 59], it is beneficial

to featurize the action space (i.e., candidate BFT protocols). FAB

does so using four dimensions, and each can be represented by

a categorical variable: (1) communication topology ś clique (𝑛 to

𝑛), star (𝑛 to 1 to 𝑛), or tree (only between parent and children);

(2) processing strategy ś optimistic, pessimistic, or robust; (3) the

number of phases and (4) leader rotation ś true or false.

Although FAB adopts the Byzantine failure model to handle

non-trustworthiness, we expect the same learning algorithms and

featurization to be effective for crash fault-tolerant (CFT) protocols

as well, since the dimensions in CFT protocols’ design space could

be seen as a subset of dimensions in BFT protocols’ design space.

For example, similar to optimistic dual-path protocols in the context

of BFT (e.g., Zyzzyva, SBFT), a CFT protocol can reach consensus

in one round optimistically assuming all nodes are non-faulty, and

if the assumption does not hold, it runs consensus in two rounds

by switching to its slow path [23].



Discovery of novel protocols. Similar to the transaction manage-

ment layer, an interesting direction is to discover new BFT protocols

that fit new environments or meet new application requirements

through the learning framework. This requires fine-grained actions,

not at the level of choosing among different existing BFT protocols,

but rather to take actions to change attributes (i.e., dimensions)

within the protocol design space, e.g., changing a processing strat-

egy or modifying the number of phases required for consensus.

Although automated Byzantine attack generators (e.g., Twins [16])

can be used, open questions remain on how to systematically ensure

and prove the correctness of the newly discovered protocols.

5.2 Switching between BFT Protocols

Optimizing protocol switching. FAB’s switching mechanism

can also be implemented over Abstract [13], where an episode of

FAB is equivalent to a Backup instance in Abstract, utilizing its

established proof system. Specifically, in terms of safety, Abstract’s

idempotency theorem specifies that if individual BFT instances are

correct, irrespectively of each other, then the system composed

through switching is also correct. In terms of liveness, Abstract

guarantees liveness if a request is not aborted by all instances.

Unlike Abstract, each episode in FAB is designed to run on the

same cluster of machines. Thus, its switching mechanism could be

further optimized. First, instead of relying on the client to panic,

each replica can decide whether to switch or not. Once executing 𝑘

requests, each replica multicasts an init history of executed requests

(i.e., checkpoint) to other replicas. Second, an honest replica does

not need to wait for 𝑓 +1matching init history and execute it before

starting the new episode, since the init history is already reflected

in its local service state. Once 𝑘 requests are committed in episode

𝑛 and the BFT protocol for 𝑛 + 1 is derived by the learning agent,

episode 𝑛 + 1 is invoked. In other words, the protocol switching can

be asynchronous inside FAB with low overhead.

6 CROSS-LAYER ADAPTATION

Optimizing blockchain software layers alone without consideration

of the underlying hardware infrastructure will hit a performance

wall. In this section, we discuss how this wall can be surmounted

through cross-layer optimizations.

Identifying performance bottlenecks. One crucial step in sup-

porting cross-layer adaptation is to identify performance bottle-

necks in the end-to-end system, so as to avoid unnecessary con-

figuration switching or resource over-provisioning. For example,

when FAB is under timing attack, the BFT protocol likely becomes

the bottleneck, even when the best-performing protocol is chosen

(e.g., Prime [6]). Under such conditions, adjusting other layers does

not improve the performance, but only incurs additional switch-

ing overhead or waste of resources [81]. On the contrary, under

a fault-free condition, blockchains are usually bottlenecked by an

inefficient transaction processing paradigm or inadequate hardware

resources, which should be adjusted via the learning agent. Adap-

tation should focus on the bottleneck layers until the best action

is chosen. Identifying the bottleneck in FAB at run-time is chal-

lenging since it depends on the system state (e.g., client workloads,

faulty conditions, and hardware) as well as the currently selected

configurations at each layer, and hence shifts over time.

Disaggregation or not? Our prior work FlexChain [81] proposed

a disaggregated BaaS infrastructure for blockchains with an XOV-

style paradigm, demonstrating efficient resource utilization through

independent scaling of different resource types. The elasticity of

disaggregated data center (DDC) infrastructure [38, 73, 88, 89] also

improves end-to-end performance when cloud resources (either

compute, memory or storage) are the bottleneck of BaaS. How-

ever, DDC incurs at least 12.8% overhead in using remote memory.

Thus, when the workload (or other factor in the state space) shifts

and hardware resources are no longer the bottleneck, it is benefi-

cial to use a non-DDC traditional setup. FAB envisions a hybrid

cloud deployment where DDC and non-DDC hardware can co-exist,

and it should seamlessly determine which infrastructure should

be adopted. A promising solution is to first view the blockchain

ledger as multi-channel time series data, and forecast the workload

changes that should lead to a transition in infrastructure.

Unlike paradigm or BFT protocol switching, this infrastructure-

level transition has higher migration costs, e.g., copying remote

memory into main memory. The overhead of switching from DDC

to non-DDC infrastructure can be first modeled according to the

transition protocol, and vice versa. If the overhead of the transition

is less than the overhead of disaggregation, the transition can be

carried out. Next, incremental transition algorithms for switching

between a DDC and non-DDC setup will be designed. Such an

incremental approach is made possible by the abstraction of run-

ning FAB as a collection of virtual peers, i.e., some peers can be

disaggregated while others are not.

BFT compatibility. A BFT protocol can only be used in a subset

of paradigms, depending on the protocol’s underlying assumptions.

For example, the Zyzzyva protocol [48] is incompatible with the

XOV-style paradigm [11, 35, 71, 74] since Zyzzyva requires clients

to actively participate in the protocol in order to detect failures and

change the leader. Thus, FAB needs to identify the permissible BFT

protocol and paradigm pairs based on their design principles. Since

the number of protocols and paradigms is not fixed (i.e., new ones

keep emerging), it is interesting to study whether FAB can learn the

permissible combinations on the fly after some exploration without

human interpretation. Finally, FAB should extend the episode-based

switching mechanism to coordinate simultaneous paradigm and

BFT protocol switching in an end-to-end system.

7 CONCLUSION

This paper outlines our vision for adaptivity in untrustworthy dis-

tributed databases. Being the most notable instance, we mainly

focus on permissioned blockchains and demonstrate that a one-

size-fits-all architecture is not future-proof as novel smart contracts,

modern hardware, and new Byzantine consensus protocols keep

emerging. To address the adaptivity challenge, we lay out a vision

of FAB that advocates machine learning at run-time across all layers

of the untrustworthy distributed databases stack.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback

and suggestions. This work is funded by NSF grants CNS-2104882

and CNS-2107147.



REFERENCES
[1] [n. d.]. AWS. Amazon quantum ledger database (QLDB). https://aws.amazon.

com/qldb/.
[2] [n. d.]. Blockchain on AWS Enterprise blockchain made real.

https://aws.amazon.com/blockchain/.
[3] [n. d.]. IBM Blockchain Platform. https://www.ibm.com/cloud/blockchain-

platform.
[4] [n. d.]. Oracle Blockchain. https://www.oracle.com/blockchain/.
[5] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter,

and Jay J Wylie. 2005. Fault-scalable Byzantine fault-tolerant services. Operating
Systems Review (OSR) 39, 5 (2005), 59ś74.

[6] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine
replication under attack. Transactions on Dependable and Secure Computing 8, 4
(2011), 564ś577.

[7] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Par-
Blockchain: Leveraging Transaction Parallelism in Permissioned Blockchain
Systems. In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337ś
1347.

[8] Mohammad Javad Amiri, Joris Duguépéroux, Tristan Allard, Divyakant Agrawal,
and Amr El Abbadi. 2021. SEPAR: Towards Regulating Future of Work Multi-
Platform Crowdworking Environments with Privacy Guarantees. In Proceedings
of The Web Conf. (WWW). 1891ś1903.

[9] Mohammad Javad Amiri, Boon Thau Loo, Divyakant Agrawal, and Amr El Ab-
badi. 2022. Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System
with Confidentiality Guarantees. Proc. of the VLDB Endowment 15, 11 (2022),
2839ś2852.

[10] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,
Boon Thau Loo, and Mohammad Sadoghi. 2024. The Bedrock of Byzantine Fault
Tolerance: A Unified Platform for BFT Protocol Design and Implementation. In
Symposium on Networked Systems Design and Implementation (NSDI). USENIX
Association.

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, and Yacov Manevich. 2018. Hyperledger Fabric: a distributed operating
system for permissioned blockchains. In European Conf. on Computer Systems
(EuroSys). ACM, 30:1ś30:15.

[12] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. [n. d.]. A Brief Survey of Deep Reinforcement Learning. 34, 6 ([n. d.]),
26ś38. https://doi.org/10.1109/MSP.2017.2743240 arXiv:1708.05866

[13] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. 2015. The next 700 BFT protocols. Transactions on Computer
Systems (TOCS) 32, 4 (2015), 12.

[14] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. [n. d.]. Making BFT
Protocols Really Adaptive. In 2015 IEEE International Parallel and Distributed
Processing Symposium (2015-05) (IPDPS ’15). 904ś913. https://doi.org/10.1109/
IPDPS.2015.21 ISSN: 1530-2075.

[15] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. 2015. Making BFT proto-
cols really adaptive. In Int. Parallel and Distributed Processing Symposium. IEEE,
904ś913.

[16] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li,
Avery Ching, and Dahlia Malkhi. 2022. Twins: Bft systems made robust. In Int.
Conf. on Principles of Distributed Systems (OPODIS). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[17] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. 2001. Consensus in one
communication step. In Int. Conf. on Parallel Computing Technologies (PaCT).
Springer, 42ś50.

[18] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, and Harry Li. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. In Annual Technical
Conf. (ATC). USENIX Association, 49ś60.

[19] Lucien Bruggeman and Sasha Pezenik. 2022. Emergent BioSolutions
discarded ingredients for 400 million COVID-19 vaccines, probe finds.
https://abcnews.go.com/US/emergent-biosolutions-discarded-ingredients-400-
million-covid-19/story?id=84604285.

[20] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. In
Symposium on Operating Systems Design and Implementation (OSDI). USENIX
Association, 173ś186.

[21] Lujing Cen, Ryan Marcus, Hongzi Mao, Justin Gottschlich, Mohammad Alizadeh,
and Tim Kraska. [n. d.]. Learned Garbage Collection. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages (2020) (MAPL @ PLDI ’20). ACM. https://doi.org/10.1145/3394450.
3397469

[22] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In SIGMOD Int.
Conf. on Management of Data. ACM, 221ś234.

[23] Bernadette Charron-Bost and André Schiper. 2006. Improving fast paxos: be-
ing optimistic with no overhead. In Pacific Rim Int. Symposium on Dependable
Computing (PRDC). 287ś295.

[24] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco
Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine
Faults.. In Symposium on Networked Systems Design and Implementation (NSDI),
Vol. 9. USENIX Association, 153ś168.

[25] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial
robustness via randomized smoothing. In Int. Conf. on Machine Learning (ICML).
PMLR, 1310ś1320.

[26] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
and Peter Hochschild. 2013. Spanner: Google’s globally distributed database.
Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.

[27] CortexFoundation. 2020. Cortex Overview. https://github.com/
CortexFoundation/tech-doc/blob/master/cortex-details.md.

[28] Sam Daley. 2021. 18 Blockchain-as-a-Service Companies Making the DLT More
Accessible. https://builtin.com/blockchain/blockchain-as-a-service-companies.

[29] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
Operating Systems Review (OSR) 41, 6 (2007), 205ś220.

[30] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In
SIGMOD Int. Conf. on Management of Data. ACM, 1085ś1100.

[31] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. 2016. Resource-efficient
Byzantine fault tolerance. Transactions on Computers 65, 9 (2016), 2807ś2819.

[32] Liming Fang, Bo Zhao, Yang Li, Zhe Liu, Chunpeng Ge, and Weizhi Meng. 2020.
Countermeasure based on smart contracts and AI against DoS/DDoS attack in
5G circumstances. IEEE Network 34, 6 (2020), 54ś61.

[33] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network require-
ments for resource disaggregation. In symposium on operating systems design
and implementation (OSDI). USENIX Association, 249ś264.

[34] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and TianwenWang.
2022. Hybrid blockchain database systems: design and performance. Proceedings
of the VLDB Endowment 15, 5 (2022), 1092ś1104.

[35] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric:
A hybrid approach to transaction execution. In Int. Conf. on Blockchain and
Cryptocurrency (ICBC). IEEE, 1ś9.

[36] Justin Gottschlich, Armando Solar-Lezama, Nesime Tatbul, Michael Carbin, Mar-
tin Rinard, Regina Barzilay, Saman Amarasinghe, Joshua B. Tenenbaum, and Tim
Mattson. [n. d.]. The three pillars of machine programming. In Proceedings of the
2nd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages (Philadelphia, PA, USA, 2018-06-18) (MAPL 2018). Association
for Computing Machinery, 69ś80. https://doi.org/10.1145/3211346.3211355

[37] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. 2023. Diablo: A Benchmark Suite for Blockchains. In European Conf. on
Computer Systems (EuroSys). ACM.

[38] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. 2017. Efficient memory disaggregation with infiniswap. In Symposium
on Networked Systems Design and Implementation (NSDI). USENIX Association,
649ś667.

[39] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2010.
The next 700 BFT protocols. In European conf. on Computer systems (EuroSys).
ACM, 363ś376.

[40] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains. In Int. Conf.
on Dependable Systems and Networks (DSN). IEEE/IFIP, 568ś580.

[41] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2021.
Proof-of-execution: Reaching consensus through fault-tolerant speculation. In
Int. Conf. on Extending Database Technology (EDBT). 301ś312.

[42] Niranjan Hasabnis and Justin Gottschlich. [n. d.]. ControlFlag: a self-supervised
idiosyncratic pattern detection system for software control structures. In Proceed-
ings of the 5th ACM SIGPLAN International Symposium on Machine Programming
(New York, NY, USA, 2021-06-20) (MAPS ’21). Association for Computing Ma-
chinery, 32ś42. https://doi.org/10.1145/3460945.3464954

[43] Hado van Hasselt, Arthur Guez, and David Silver. [n. d.]. Deep Reinforcement
Learning with Double Q-Learning. In Thirtieth AAAI Conference on Artificial
Intelligence (2016-03-02) (AAAI ’16). https://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12389

[44] Zsolt István, Alessandro Sorniotti, and Marko Vukolić. 2018. StreamChain: Do
Blockchains Need Blocks?. In Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL). ACM, 1ś6.

[45] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
2012. CheapBFT: resource-efficient byzantine fault tolerance. In European Conf.
on Computer Systems (EuroSys). ACM, 295ś308.

[46] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
2022. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. The Science



of Blockchain Conf. (SBC) (2022).
[47] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[48] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. Operating Systems
Review (OSR) 41, 6 (2007), 45ś58.

[49] Jae Kwon. 2014. Tendermint: Consensus without mining. (2014).
[50] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558ś565.
[51] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18ś25.
[52] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79ś103.
[53] Leslie Lamport and Mike Massa. 2004. Cheap paxos. In Int. Conf. on Dependable

Systems and Networks (DSN). IEEE, 307ś314.
[54] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-

izadeh, and Tim Kraska. [n. d.]. Bao: Making Learned Query Optimization
Practical. In Proceedings of the 2021 International Conference on Management of
Data (China, 2021-06) (SIGMOD ’21). https://doi.org/10.1145/3448016.3452838
Award: ’best paper award’.

[55] Ryan Marcus and Olga Papaemmanouil. [n. d.]. Releasing Cloud Databases from
the Chains of Performance Prediction Models. In 8th Biennial Conference on
Innovative Data Systems Research (San Jose, CA, 2017) (CIDR ’17). tex.authors=
Ryan Marcus and Olga Papaemmanouil.

[56] J-P Martin and Lorenzo Alvisi. 2006. Fast byzantine consensus. Transactions on
Dependable and Secure Computing 3, 3 (2006), 202ś215.

[57] AndrewMiller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The honey
badger of BFT protocols. In Conf. on Computer and Communications Security
(CCS). ACM, 31ś42.

[58] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In Int. Conf. on Machine Learning
(ICML). PMLR, 1928ś1937.

[59] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, and
Georg Ostrovski. [n. d.]. Human-level control through deep reinforcement
learning. 518, 7540 ([n. d.]), 529ś533.

[60] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT Con-
sensus with Pipelined Tree-Based Dissemination and Aggregation. In Symposium
on Operating Systems Principles (SOSP). ACM, 35ś48.

[61] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In Annual Technical Conf. (ATC). USENIX Association,
305ś319.

[62] Dan Patterson. 2021. Hackers are attacking the COVID-19 vaccine supply chain.
https://www.cbsnews.com/news/covid-19-vaccine-hackers-supply-chain/.

[63] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen
Chu. 2021. P2B-Trace: Privacy-Preserving Blockchain-based Contact Tracing
to Combat Pandemics. In SIGMOD Int. Conf. on Management of Data. ACM,
2389ś2393.

[64] Zhe Peng, Jianliang Xu, Xiaowen Chu, Shang Gao, Yuan Yao, Rong Gu, and
Yuzhe Tang. 2021. Vfchain: Enabling verifiable and auditable federated learning
via blockchain systems. IEEE Transactions on Network Science and Engineering
(2021).

[65] Marco Platania, Daniel Obenshain, Thomas Tantillo, Yair Amir, and Neeraj Suri.
2016. On choosing server-or client-side solutions for BFT. ACM Computing
Surveys (CSUR) 48, 4 (2016), 1ś30.

[66] World Food Programme. 2017. Blockchain Against Hunger: Harnessing Tech-
nology In Support Of Syrian Refugees. https://www.wfp.org/news/blockchain-
against-hunger-harnessing-technology-support-syrian-refugees.

[67] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang, Tianxiang Shen, Shixiong
Zhao, Sen Wang, Gong Zhang, Li Chen, Man Ho Au, et al. 2021. Bidl: A High-
throughput, Low-latency Permissioned Blockchain Framework for Datacenter
Networks. In Symposium on Operating Systems Principles (SOSP). ACM, 18ś34.

[68] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. [n. d.]. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
48, 6 ([n. d.]), 519ś530. https://doi.org/10.1145/2499370.2462176

[69] Steve Reilly, Jason Paladino, Jonathan Lambert, and Matt Stiles. 2022.
Fake vaccine cards are everywhere. It’s a public health nightmare.

https://www.grid.news/story/science/2022/01/25/fake-vaccine-cards-are-
everywhere-its-a-public-health-nightmare/.

[70] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. 2020. Certi-
fied robustness to label-flipping attacks via randomized smoothing. In Int. Conf.
on Machine Learning (ICML). PMLR, 8230ś8241.

[71] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 543ś557.

[72] Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299ś319.

[73] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. {LegoOS}:
A Disseminated, Distributed {OS} for Hardware Resource Disaggregation. In
Symposium on Operating Systems Design and Implementation (OSDI). USENIX
Association, 69ś87.

[74] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case of
hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM, 105ś122.

[75] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy Roscoe.
2008. BFT Protocols Under Fire.. In Symposium on Networked Systems Design
and Implementation (NSDI), Vol. 8. USENIX Association, 189ś204.

[76] Judy Stone. 2021. How Counterfeit Covid-19 Vaccines And Vaccination Cards
Endanger Us All. https://www.forbes.com/sites/judystone/2021/03/31/how-
counterfeit-covid-19-vaccines-and-vaccination-cards-endanger-us-
all/?sh=eaddb0e36495.

[77] Richard S. Sutton and Andrew G. Barto. [n. d.]. Introduction to Reinforcement
Learning (1st ed.). MIT Press.

[78] William R. Thompson. [n. d.]. On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. ([n. d.]).

[79] Feng Tian. 2017. A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of things. In Int. Conf. on service systems and
service management (ICSSSM). IEEE, 1ś6.

[80] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. [n. d.].
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (New York, NY, USA, 2017) (SIGMOD ’17). ACM, 1009ś1024. https:
//doi.org/10.1145/3035918.3064029

[81] Chenyuan Wu, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen
Zhang, and Boon Thau Loo. 2022. FlexChain: An Elastic Disaggregated
Blockchain. Proc. of the VLDB Endowment 16, 01 (2022), 23ś36.

[82] Chenyuan Wu, Bhavana Mehta, Mohammad Javad Amiri, Ryan Marcus, and
Boon Thau Loo. 2023. AdaChain: A Learned Adaptive Blockchain. Proc. of the
VLDB Endowment 16, 8 (2023), 2033ś2046.

[83] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and
Wenyuan Yan. 2020. LedgerDB: a centralized ledger database for universal audit
and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138ś3151.

[84] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and
Ion Stoica. [n. d.]. Balsa: Learning a Query Optimizer Without Expert Demon-
strations. In Proceedings of the 2022 International Conference on Management of
Data (New York, NY, USA, 2022-06-10) (SIGMOD ’22). Association for Computing
Machinery, 931ś944. https://doi.org/10.1145/3514221.3517885

[85] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In Sym-
posium on Principles of Distributed Computing (PODC). ACM, 347ś356.

[86] Raul Zambrano, Andrew Young, and Stefaan Verhulst. 2018. Connecting refugees
to aid through blockchain-enabled ID management: world food programme’s
building blocks. GovLab October (2018).

[87] Qizhen Zhang, Yifan Cai, Sebastian Angel, Ang Chen, Vincent Liu, and
Boon Thau Loo. 2020. Rethinking data management systems for disaggregated
data centers. In Conf. on Innovative Data Systems Research (CIDR).

[88] Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent Liu,
and Boon Thau Loo. 2020. Understanding the effect of data center resource
disaggregation on production DBMSs. Proceedings of the VLDB Endowment 13, 9
(2020).

[89] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian
Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. 2022. Optimizing data-
intensive systems in disaggregated data centers with teleport. In Int. Conf. on
Management of Data. 1345ś1359.


	Abstract
	1 Introduction
	2 Background
	3 FAB Overview
	4 Adapting Transaction Management Paradigm
	4.1 Learning Framework
	4.2 Switching between Paradigms

	5 Adapting BFT Protocol
	5.1 Learning Framework
	5.2 Switching between BFT Protocols

	6 Cross-Layer Adaptation
	7 Conclusion
	Acknowledgments
	References

