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Abstract
Assistive drawing aims to facilitate the creative process by provid-
ing intelligent guidance to artists. Existing solutions often fail to
effectively model intricate stroke details or adequately address the
temporal aspects of drawing. We introduce hyperstroke, a novel
stroke representation designed to capture precise fine stroke de-
tails, including RGB appearance and alpha-channel opacity. Using
a Vector Quantization approach, hyperstroke learns compact tok-
enized representations of strokes from real-life drawing videos of
artistic drawing. With hyperstroke, we propose to model assistive
drawing via a transformer-based architecture, to enable intuitive
and user-friendly drawing applications, which are experimented in
our exploratory evaluation.

CCS Concepts
•Computingmethodologies→ Image processing; Shape anal-
ysis; Image manipulation.
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1 Introduction
Drawing is inherently an incremental process where artworks are
created stroke-by-stroke, reflecting underlying drawing intent and
locality. In this work, we investigate the problem of incremental
drawing from the perspective of a drawing assistant. Our goal is
to provide essential guidance to users in applying proper drawing
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Figure 1: Example of real-life artistic drawing. Incremental
drawing on canvas 𝐴𝑡 is recorded in the form of timelapse
video. The user-provided stroke S𝑡 is not included in the
timelapse and has to be explicitly estimated. © Linda Wei.

strokes to complete visually pleasing artworks, considering the
current unfinished canvas composition and the full or partial history
of user strokes. Such an application enhances our understanding of
the creative process and seamlessly integrates into existing artistic
workflows in a suggest-then-accept manner.

The existing literature focuses mainly on reproducing complete
artworks using pre-defined stroke patterns [Liu et al. 2021; Singh
et al. 2021; Zheng et al. 2018] or performing incremental stroke
prediction exclusively in the vector domain [Bhunia et al. 2020; Ha
and Eck 2017]. Recent diffusion-based models exhibit impressive
results in the generation of artwork, but their generation must
be performed in a single pass [Nitzan et al. 2024; Rombach et al.
2022]. This hinders iterative refinement and co-creation, which are
essential in the drawing process. We hypothesize that existing ap-
proaches may prioritize overall visuals but neglect the importance
of strokes, which are the fundamental basic units contributing to
an artwork in both spatial and temporal domains. This oversight
is particularly detrimental for a drawing assistant. In Figure 1, we
illustrate several steps in which the user applies strokes. Real-life
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Figure 2: Overview of our framework. The right demonstrates the learning of tokenization in hyperstrokes (Section 2.1), while
the left shows our systematic design in predictive incremental drawing (Section 2.2). Artwork involved © Linda Wei.

drawing of strokes is far more complex than simple shape prim-
itives, involving specific movements, shape and color variations,
etc. More importantly, these strokes exhibit opacity, i.e. alpha, to
blend additively over the canvas, crafting delicate details and shad-
ings. Therefore, understanding and modeling strokes are crucial
for modeling a drawing assistant.

In this work, we propose hyperstroke, an efficient and expressive
stroke representation to better model strokes in real-life artistic
drawing with alpha-channel opacity. Our key insight is to employ
a VQ-based model to learn a compact tokenized representation of
grounded strokes within their bounding boxes. Our experiments
demonstrate the efficiency of the hyperstroke design and, more
importantly, show the potential to learn predictive incremental
drawing under the hyperstroke formulation, using an encoder-
decoder transformer architecture. We summarize our contributions
as follows:

• We introduce a novel representation, hyperstroke, to model
delicate artistic drawing stroke appearance and opacity;

• We propose an updated VQGAN architecture to learn hyper-
stroke tokenization from real-life incremental drawing;

• We investigate to use transformer models to learn hyper-
stroke sequences for assistive incremental drawing.

2 Method
2.1 Hyperstroke
2.1.1 Formulation. In this work, we introduce the novel hyper-
stroke representation for modelling the strokes in practical artistic
drawing. Unlike traditional methods that represent storkes as sim-
ple elliptical pixels, or vector primitives, our approach aims to
capture the essence of real-life strokes with diverse appearances
and alpha variations. By investigating the artistic drawing process,
we observe several key properties within a stroke:

• Property 1: Independence inRepresentation. Strokes are
additive in nature, meaning each new stroke is an additional
layer alpha-blended onto the existing canvas, independent
of all other strokes, as seen in the strokes S of Figure 1.

• Property 2: Spatial Sparsity. Strokes are inherently spa-
tially sparse. Though the canvas may be extensive, each
stroke is either detailed and confined to a small area or spans
a larger region but is relatively coarse. Therefore, when ex-
tracted and normalized to a consistent scale, each stroke
should carry a similar amount of low-scale information.

Based on these assumptions, we design our hyperstroke represen-
tation to be atomic and compact. Leveraging the sparsity property
of strokes, we propose using bounding boxes to locate each stroke
and encode only the pixels within them, for better expressiveness
of strokes in smaller regions. Formally, we define the pixel-domain
hyperstroke S = ⟨I,B⟩, where I = (𝐼 , 𝛼) is a 4-channel alpha
image and B = (𝑥1, 𝑦1, 𝑥2, 𝑦2) is the bounding box of I. In this way,
we can regard each stroke-box combo shown in the bottom two
rows of Figure 1 as a hyperstroke. When a hyperstroke S is applied
to an image 𝐴, we denote the blending operation 𝐴 ◦ S as:

(𝐴 ◦ S)(𝑥,𝑦) =

(𝐼 · 𝛼 +𝐴 · (1 − 𝛼)) (𝑥,𝑦)

𝑥1 ≤ 𝑥 < 𝑥2
𝑦1 ≤ 𝑦 < 𝑦2

𝐴(𝑥,𝑦) . otherwise
(1)

2.1.2 Tokenization. To this point, we have formulated the hyper-
strokes in the pixel space. However, this formulation proves ineffec-
tive for modeling incremental drawing, as learning pixel-domain
hyperstrokes with temporal information is computationally inten-
sive. Conversely, transformer models excel at modeling temporal
sequences, which is more suitable for learning incremental drawing,
suggesting the representation of hyperstrokes as discrete tokens.
Specifically, we perform hyperstroke tokenization separately for I
and B. To tokenize bounding box B, we first subdivide the image
canvas into grids of 𝐶 ×𝐶 , with each grid cell having dimensions
⌊𝑊 /𝐶⌋ × ⌊𝐻/𝐶⌋, where𝑊 and 𝐻 denotes width and height of the
original canvas. For any bounding box B, we compute its small-
est exterior box that snaps to the grid and tokenize it in the form
B̃ = (𝑋1, 𝑌1, 𝑋2, 𝑌2) ∈ 𝑇 4

B , where the integer 𝑋1, 𝑋1, 𝑌2, 𝑌2 repre-
sents the indices of the grid corners to which the exterior box snaps,
and 𝑇B is a vocabulary of {0, 1, . . . ,𝐶}. This grid-based design re-
duces the complexity of bounding box tokens without significantly
compromising the encoding of the stroke image I, using a slightly
larger bounding box.

For the stroke pixels I, we perform the same grid snapping
strategy as B, and then resize it to a consistent dimension𝑊𝑇 ×𝐻𝑇 .
We learn to tokenize its visual tokens Ĩ ∈ 𝑇𝑘

VT via a VQ-based
approach, which will be explained in the following subsection.

2.1.3 Training Hyperstroke from Real-life Incremental Drawing. To-
kenizing a 4-channel alpha image I appears straightforward due
to existing standards such as VQGAN [Esser et al. 2021]. However,
we find the quality of the data contributing to visual token learning
critical. Synthesizing arbitrary alpha strokes programmatically is
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Figure 3: Reconstruction of real-life incremental drawing from timelapse videos. (a) Timelapse snapshot at 𝑡 = 328; (b)
Reconstructed canvas composited by hyperstrokes; (c) Inferred stroke sequences from adjacent timelapse frames. © Hao Chen

one direction but would overcomplicate the final encoded tokens.
Real-life strokes exhibit more specific distributions, as the draw-
ing of each stroke follows human-specific aesthetic considerations.
In this circumstance, sources recording practical human-drawn
strokes with pixel-level opacity would be ideal for training, but
such data is usually unavailable. Therefore, we attempt to collect
strokes with alpha information from timelapse videos (shown in
Fig. 1), which capture consecutive canvas frames whenever a new
stroke is applied. Unfortunately, timelapse videos do not store any
specific stroke information, so we have to estimate the strokes S𝑡
from adjacent frame correspondences; but direct estimation is in-
feasible due to the ill-posed nature of inversing alpha blending. To
address this, we propose an improved VQ model architecture to pre-
dict alpha strokes 𝑆𝑡 from adjacent frames with implicit supervision,
without requiring ground truth stroke.

We illustrate our VQ model design on the right of Figure 2.
The input is the concatenation ( [𝐴𝑡 , 𝐴𝑡+1] ∈ R𝐻×𝑊 ×6) of any
adjacent frames 𝐴𝑡 and 𝐴𝑡+1 in the data set. We use the encoder 𝐸
and a codebook Z to learn the tokenization of stroke features as
q(𝐸 (𝐴𝑡 , 𝐴𝑡+1)). We use a decoder 𝐺 to learn the reconstruction of
the 4-channel stroke 𝑆𝑡 from the learned tokens. Here, we supervise
𝑆𝑡 by checking if 𝐴𝑡+1 can be obtained by blending 𝐴𝑡 with 𝑆𝑡 :

LVQ = Lrec
(
𝐴𝑡+1,

(
𝐴𝑡 ◦ Ŝ𝑡

))
+
sg [𝐸 (𝐴𝑡 , 𝐴𝑡+1)] − 𝑧q

2
2

+
sg [

𝑧q
]
− 𝐸 (𝐴𝑡 , 𝐴𝑡+1)

2
2 ,

(2)

whereLrec is the sumof theMSE loss and the perceptual loss [Zhang
et al. 2018] and the other two loss terms optimize the use of code-
books; sg[·] denotes the stop-gradient operation. The blending
operation 𝐴𝑡 ◦ Ŝ𝑡 in the supervision encourages the encoder 𝐸 to
focus on a decoupled representation of the stroke, rather than mem-
orizing𝐴𝑡 and𝐴𝑡+1. Besides, we also introduce adversarial learning
with a discriminator 𝐷 for better decoder perceptual quality, with
a similar implicit supervision:

LGAN ({𝐸,𝐺,Z}, 𝐷) =
[
log𝐷 (𝐴𝑡+1) + log

(
1 − 𝐷

(
𝐴𝑡 ◦ Ŝ𝑡

))]
. (3)

2.1.4 Data and Training Details. We construct our dataset in two
parts: a synthetic dataset and data from real-life timelapse videos.
For the synthetic data, we first perform a random crop of real
artistic drawings. After that, we synthesize a Bezier stroke with

varying widths and opacity and blend it with the cropped drawing
to form the data. Since the synthetic data contains ground truth
alpha for the stroke, we can use direct reconstruction loss Lrec in
Eq. 2 instead of implicit supervision with additional alpha blending
on the generator output. This direct supervision helps the model
better understand opacity from the very beginning of training,
thereby improving its learning capability on real-life data. Overall,
our dataset consists of 85,425 synthetic data samples and 74,286
real data samples in the form of frame pairs. We mix the two types
of supervision during training directly.

2.2 Learning Drawing with Hyperstroke
Expanding on the stroke tokenization method outlined in Sec-
tion 2.1, we define incremental drawing as a sequence generation
task, which can be effectively modeled with an encoder-decoder
transformer model. The model, as shown on the left of Figure 2,
leverages the encoder E, a Vision Transformer (ViT) [Dosovitskiy
et al. 2020], to extract contextual information 𝜏𝑐 from the current
canvas 𝐴𝑡 . Furthermore, we use the CLIP model [Radford et al.
2021] C to encode the guidance 𝜏𝑔 of controlling signals such as
reference images and text descriptions. We combine 𝜏𝑐 and 𝜏𝑔 em-
beddings and send them to the decoder through cross-attention, to
predict subsequent hyperstroke tokens

(
(B̃, Ĩ) ∈ 𝑇 4

B ×𝑇𝑘
VT

)𝑛
in an

autoregressive manner, where 𝑘 is the number of visual tokens for
each stroke, and 𝑛 is the number of hyperstrokes to be predicted.
With the VQ decoder model 𝐺 , we will be able to decode and com-
posite each hyperstroke back into the pixel domain, to form future
frames from 𝐴𝑡+1 to 𝐴𝑡+𝑛 .

We choose an encoder-decoder architecture over a decoder-only
model to meet the unique needs of drawing tasks. Compared with
text sequences where self-attention effectively captures context,
predictive drawing involves more complex contextual requirements.
The focus within is to determine the next few strokes, in the con-
text of the current canvas composition and a few past user strokes.
This complexity makes a decoder-only architecture impractical, as
relying on a long sequence of historical hyperstrokes would be com-
putationally inefficient. Conversely, our encoder model E directly
provides the current canvas context through a Vision Transformer,
eliminating the need to learn indirectly from the complete historical
hyperstroke sequences. This approach provides several practical
applications with the context provided, including: (a) unconditional
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Figure 4: Results on predictive incremental drawing con-
ditioned on raster canvas and text descriptions. Odd rows
show predicted compositions; even rows demonstrate de-
coded grounded strokes within its bounding box. The last
example prompts 2 hyperstrokes in the decoder.

sequential hyperstroke prediction; (b) prediction of subsequent
hyperstrokes using a few hyperstrokes as historical prompts, for
temporal-consistent stroke prediction; and (c) predicting the next
visual token Ĩ given a bounding box prompt. One might argue
that making the decoder output a single hyperstroke would suffice,
as the rasterized next-frame context could be rendered on-the-fly.
However, this method fails to capture temporal information. Our
approach, by predicting ordered stroke sequences, inherently cap-
tures locality of neighboring strokes, semantics of different canvas
areas, as well as the drawing intent of the artists, enabling long-term
understanding capability, and thus bringing better interactivity for
the artists. During training, notice that the amount of generated
visual tokens Ĩ and bounding box tokens B̃ are unbalanced, to
stabilize the training, we further impose a coefficient 𝜆 = 𝑘/4 on
the parts of the cross entropy loss corresponding to the generated
bounding box tokens.

3 Experiments
Hyperstroke Representation. We first investigate the expressive-

ness of the hyperstroke representation. We use our revamped
VQGAN model described in Sec. 2.1 to reconstruct all interme-
diate strokes from a complete artistic drawing timelapse of 328
frames (Fig. 3 (a)). Figure 3 (c) shows the reconstruction of strokes,
grounded by their bounding box areas. The results demonstrate
that tokenized hyperstroke can capture detailed stroke appearances,
including shape and color variations. Based on the quality of the
composition of all 328 strokes (Fig. 3 (b)), we conclude that hyper-
stroke can successfully encode the opacity of strokes from timelapse
contexts, enabling the reproduction of artistic illustrations with a
much more condensed representation.

Assistive Sketch Generation. We explore the transformer model
proposed in Section 2.2 to predict subsequent stroke sequences
from user-provided contexts. Given the challenges of scaling up
transformers to learn practical artistic drawing sequences due to

the scarcity of large-scale incremental drawing datasets, we instead
conduct a proof-of-concept using the Quick, Draw! dataset [Ha
and Eck 2017] and show results in Figure 4. Given canvas context
and text conditions, the model demonstrates the ability to gener-
ate visually pleasing, temporally intuitive, and coherent sketching
sequences that compose meaningful doodles. This generation can
be performed unconditionally or prompted from additional user-
provided hyperstrokes.

4 Conclusion
In this work, we propose hyperstroke, an efficient and expressive
stroke representation designed to capture the essence of artistic
drawing strokes. It is particularly well-suited for transformer-based
sequential modeling. In the future, we may aim to investigate bet-
ter hyperstroke encoding schemes, the balance between canvas
encodings and historic stroke inputs, and conduct more compre-
hensive assistive drawing evaluations, by which we believe that
the representational capabilities of hyperstroke will inspire future
HCI applications in assistive drawing. It will enable a more com-
prehensive understanding of artistic drawing techniques and fulfill
the genuine needs of artists, thereby enhancing their productivity.
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