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Trajectory-guided Anime Video Synthesis via Effective Motion
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Figure 1: Given a still frame of cartoon or comics, we will be able to animate it into a video clip guided by the user-specified motion
trajectory and text prompts.

Abstract
Cartoon and anime motion production is traditionally labor-intensive, requiring detailed animatics and extensive inbetweening
from keyframes. To streamline this process, we propose a novel framework that synthesizes motion directly from a single colored
keyframe, guided by user-provided trajectories. Addressing the limitations of prior methods, which struggle with anime due to
reliance on optical flow estimators and models trained on natural videos, we introduce an efficient motion representation
specifically adapted for anime, leveraging CoTracker to capture sparse frame-to-frame tracking effectively. To achieve our
objective, we design a two-stage learning mechanism: the first stage predicts sparse motion from input frames and trajectories,
generating a motion preview sequence via explicit warping; the second stage refines these previews into high-quality anime
frames by fine-tuning ToonCrafter, an anime-specific video diffusion model. We train our framework on a novel animation
video dataset comprising more than 500,000 clips. Experimental results demonstrate significant improvements in animating
still frames, achieving better alignment with user-provided trajectories and more natural motion patterns while preserving
anime stylization and visual quality. Our method also supports versatile applications, including motion manga generation and
2D vector graphic animations. The data and code will be released upon acceptance. For models, datasets and additional visual
comparisons and ablation studies, visit our project page: https://animemotiontraj.github.io/.
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1. Introduction

Cartoon motion production is traditionally a labor-intensive and
time-consuming process. To translate the director’s vision for sub-
ject, scene, and camera motion, animators must carefully illustrate
the animatics and derive the rendering of colored keyframes from
them, and then build up the inbetweening of these keyframes. Al-
though this workflow has been a standard practice for decades, it
involves a chain of tedious steps, including motion design, animatic
rendering, and frame colorization, all of which require significant
skill and effort from both directors and animators. In this work,
we aim to synthesize animation motion directly from one single
colored keyframe, guided by user-provided trajectories. These tra-
jectories specify the movements of key regions of interest within
the initial frame. This single-frame, trajectory-controlled setting
targets the ideation / animatic previsualization phase: animators
can rapidly explore alternative character and camera motions be-
fore investing effort in drawing additional keyframes for traditional
two-keyframe inbetweening.

Prior works, such as DragNUWA [YWL∗23], MotionC-
trl [WYW∗24] and Motion-I2V [SHW∗24] have explored similar
objectives. These methods primarily use optical flow to estimate
scene and object motion, and sample user-specified motion trajec-
tories from it. The trajectories are then encoded as feature embed-
dings to guide a fine-tuning of pre-trained video models for mo-
tion synthesis. However, we observe that these methods often fail
to produce anime motion frames with visually pleasing subject ac-
tions, pose transitions, scene transitions, and detailed object dy-
namics and deformations. First, all of these methods rely on optical
flow estimators to parse motion in anime for the downstream frame
synthesis. However, optical flow quality cannot be guaranteed for
animations, as the appearance and motion of anime often violate
the texture, color, or gradient constraints that optical flow estima-
tors depend on (Fig. 2 (c,e)). Moreover, these methods primarily
rely on the generalization ability of existing image-to-video mod-
els, without explicitly interpreting and translating the motion hints
into 2D correspondences, leading to unsatisfactory outputs. While
Motion-I2V predicts explicit optical flow-based motion from the
user trajectory and uses the predicted motion to warp the video dif-
fusion latents, we find it difficult to adapt to the anime domain to
provide stable and satisfactory motions.

In this work, we propose a novel framework to address these
challenges. First, we introduce an efficient sparse motion repre-
sentation that records displacements on a sparse array of key-
points. Using a high-quality point-based tracker such as Co-
Tracker [KRG∗25] which extracts motion from multi-frame corre-
spondences, this representation effectively captures most frame-to-
frame tracking and morphing profiles in anime. Motion reconstruc-
tion using this representation demonstrates significantly reduced
distortions and improved structure preservation, as illustrated in
Fig. 2. With this representation, we then develop our framework
with a two-stage design. In the first stage, we propose a video dif-
fusion model to predict the sparse motion representation directly
from a set of predefined conditions, including the input frame, user
trajectories, and text prompts. To support training, we also propose
a large-scale anime motion dataset with a novel motion sampling
procedure to approximate user trajectories from CoTracker estima-

Figure 2: Sparse motion tracking with CoTracker better estimates
inter-frame anime correspondences to maintain the structural com-
ponents when warping is performed.

tions. Using the predicted sparse motion, we warp the initial frame
to construct a motion preview sequence. Although this sequence
may contain distortions and uncertainties, it serves as an explicit
motion prior to lower the learning difficulties for later stages. In
the second stage, we leverage the generative prior of an anime-
specific video diffusion model, ToonCrafter [XLX∗24], and fine-
tune this model to interpret motion guidance implicitly from the
user-provided trajectories and explicitly from the warped motion
preview, to generate high-quality anime video clips. This approach
enables trajectory-controlled generation of anime frames with im-
proved details, realistic and trajectory-conforming motion, and ro-
bust handling of occlusions.

We evaluate our method extensively through both qualitative and
quantitative experiments. The results demonstrate that explicit mo-
tion guidance and our proposed sparse representations allow our
approach to achieve significantly improved performance. Specifi-
cally, it ensures better alignment with user-provided motion trajec-
tories and more natural and intuitive motion patterns while preserv-
ing anime-specific stylization and frame-level visual quality (Fig. 1
and Fig. 6). In addition, we explore potential applications of our
method, including motion generation for manga and vector graph-
ics. These applications showcase the versatility of our approach to
enable intuitive and semantically conforming animation production
from a wide variety of media forms. We summarize our contribu-
tions as follows:

• We propose a novel sparse keypoint-based representation to pro-
vide efficient and higher-quality modeling of anime motion,
compared with optical-flow based solutions;
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• We produce a two-stage framework to encougage explicit learn-
ing of motions and leverage the generative prior of ToonCrafter,
to assure high-quality video synthesis for anime;

• We propose a novel trajectory sampling and scene parsing ap-
proach with CoTracker, to form a new captioned anime clip
dataset with over 500k clips;

• We demonstrate the generalization ability of our approach on
various media such as manga and 2D vector graphics for poten-
tial applications in animation production and design.

2. Related Work

2.1. Anime Motion Understanding and Frame Synthesis

To parse motion in animations, dense optical flow tracking meth-
ods [SYLK18, TD20, XZC∗22, HSZ∗22, SHL∗23] can be applied
directly to animation frames. However, these methods often strug-
gle on anime frames due to the domain gap in motion character-
istics and appearances. The sparse detailing and lack of complex
shading typical of anime introduce challenges for traditional op-
tical flow approaches. To address this, various methods estimate
or track anime motion using segmentation [ZLWH16, CPL21],
outline [MGW24], geometry [DLKS18, SGX∗23], or deforma-
tion [SBCv∗11] correspondences. AnimeInterp [SZY∗21] incorpo-
rates anime-specific constraints for optical flow estimation using a
curated dataset, while Animerun [LLL∗22] extends correlation es-
timation by adapting 3D animations. Despite these advancements,
the ground truth motion provided by these methods remains lim-
ited in scale, making it insufficient to support large-scale motion
prediction or frame synthesis models.

Recent advances in latent video diffusion models [BDK∗23,
CZC∗24, CXH∗23, YTZ∗24] enable direct video synthesis from a
driving image. However, these models often fail to produce satis-
factory results for anime keyframes due to the domain gap. Toon-
Crafter [XLX∗24] partially bridges this by fine-tuning on a large-
scale anime dataset, allowing smooth motion transitions but re-
quiring an additional ending keyframe. Animatediff also achieves
video synthesis by leveraging pre-trained models with a motion
adapter. While an anime-look LoRA enables anime synthesis, it
is limited in generating diverse appearances and struggles with
high-resolution outputs. Alternatively, anime frame generation can
be approached as reference-based colorization [SZC∗23, HZL24,
MOW∗25], but this requires per-frame sketch inputs. Video syn-
thesis has also been extended to other non-photorealistic media like
rough sketches [GVA∗24] and vector graphics [WSML24].

2.2. Trajectory-based Video Synthesis

Trajectory-based video synthesis generates videos from a still im-
age using point-based trajectories to define motion, enabling in-
teractive control over an object’s appearance and position. Tradi-
tional methods like ARAP [IMH05] and DragGAN [PTL∗23] fo-
cus on appearance editing but lack natural temporal transitions.
DragNUWA [YWL∗23] first introduced a pipeline for interactive
trajectory-guided video synthesis, including a strategy to sample
user trajectories from optical flow and a video diffusion model for
generating natural-looking and trajectory-following videos. Subse-
quent works have extended this by focusing on fine-grained mo-
tion region determination [WLG∗24], adapting to large-scale video

synthesis models [ZLL∗25,WHF∗25], integrating trajectory-based
control for inbetweenings [WWZ∗24], or providing separate con-
trols for camera and object motion [WYW∗24]. However, these
methods rely on tracking estimators like optical flow or SIFT,
which are often ill-suited to anime’s unique motion and appear-
ance. Furthermore, they lack explicit motion modeling, relying in-
stead on the generative capacity of latent diffusion models, which
limits their ability to produce visually pleasing results. PhysAni-
mator [XZJJ25] transforms user-specified motion into optical flow
via physical simulation, but it is designed for specific motions and
objects and does not consider multi-object interactions.

Another methodology closely related to our proposed approach
is Motion-I2V [SHW∗24], as both utilize a two-stage pipeline
for motion prediction followed by frame synthesis. This approach
first predicts 2D optical flow displacements by fine-tuning a latent
video diffusion model. It then fine-tunes the Animatediff motion
adapter [GYR∗24], using warped latents from the predicted dis-
placements as motion guidance to produce smooth videos. How-
ever, when tested in animations, its results were unsatisfactory (see
Sect. 5). A key limitation lies in its reliance on optical flow esti-
mators. Additionally, the Animatediff motion adapter struggles to
generalize to anime-specific appearances due to the domain gap
in its underlying text-to-image synthesis model, Stable Diffusion
1.5 [RBL∗22]. Training the warping-guided Animatediff motion
modules requires a large amount of training data, which is impracti-
cal given the scarcity of large-scale anime datasets. In contrast, our
framework adopts a sparse motion representation that is both more
efficient and less error-prone compared to the dense optical flow or
latent motion transformations used in prior methods. Furthermore,
by leveraging a large-scale pre-trained anime-specific model as
our generative prior, we achieve higher-quality results without re-
quiring an excessively large dataset. Importantly, our single-frame,
trajectory-driven setup targets the earlier previsualization stage, of-
fering animators a fast way to explore motion concepts without the
need for extensive keyframe or inbetweening work.

3. Representation of Anime Motion

3.1. Sparse Anime Motion Representation

As outlined in the introduction, we propose to represent anime
motion with a sparse motion representation f ∈ RL×H f ×Wf ×2,
which tracks the 2D displacements of predefined keypoints ar-
ranged in an evenly distributed H f ×W f grid with the frame length
L. In our following experiments, we set H f = 16, W f = 28, and
L = 16. For any tracker point at position i, j (we omit the indices
i, j ∈ [0,H f − 1]× [0,W f − 1] later for simplicity), we will be able
to represent the motion as frame-wise displacements:

f =
(
(x0,y0),(x1 − x0,y1 − y0), ...,(xL−1 − xL−2,yL−1 − yL−2)

)
,

(1)
where superscript denotes frame index and x and y denote tracker
coordinates. With a reliable keypoint-based tracker such as Co-
Tracker [KRG∗25] to estimate the ground truth motion, frame re-
construction with f more closely resembles the original, preserv-
ing structure and reducing artifacts compared to optical flow-based
methods, as shown in Fig. 2.
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3.2. Trajectory Sampling

Besides motion representation, it is also critical to design the for-
mat of user-specified motion trajectories and also the trajectory
sampling process from raw animation videos. Existing methods of-
ten sample (or approximate) trajectories by drawing random points
from the optical flow map and tracing their locations. However, as
previously discussed, optical flow estimators struggle with estimat-
ing anime motions, making it unstable and inaccurate for trajectory
sampling. Motion-I2V [SHW∗24] employs DOT [LMPS24] track-
ers to approximate user trajectories, but it lacks a clear explanation
of the placement and tracking of tracker points to form them.

To address these issues, we propose a novel trajectory sam-
pling approach by analyzing the most significant modes of mo-
tion on the sparse motion representation f , where motion is esti-
mated using CoTracker. Compared with optical flow, we find that
CoTracker better exploits the multi-frame correspondences to pro-
vide more precise and robust point-based tracking on anime. We
illustrate the trajectory sampling process in Fig. 3. Specifically,
we first determine the number of user trajectories, ntra j, by sam-
pling from a truncated Gaussian distribution. The probability den-
sity is defined as p(n) = d(n)/∑

nmax
i=nmin

d(i), where the raw density

is d(n) = e−|n−m|/σ. In our experiments, we set m = 2, σ = 2, and
restrict ntra j to the range [nmin = 1,nmax = 10]. Once ntra j is deter-
mined, we extract the most significant motion modes by clustering
the motion into ntra j groups via K-Means [HW79] clustering. We
intentionally allow ntra j , and thus K, to be smaller than the actual
number of moving objects. As a result, distinct motions can share a
cluster. This design reduces the burden on the user to specify every
moving part and encourages the model to infer plausible motion
in unattended regions rather than overfitting to a fully specified set
of trajectories. To ensure better locality and mitigate inadvertent
grouping of far-apart motions, we introduce a position-aware mo-
tion feature v ∈ RWf H f ×2L, defined as:

v = (x0/16,y0/16,x1 − x0,y1 − y0, ...,xL−1 − xL−2,yL−1 − yL−2),
(2)

where the coordinates of the starting point of any specific tracker
point is scaled by 1/16 to balance numerical scales. Within each
cluster, we randomly select a trajectory with a probability propor-
tional to its length relative to the total length of all trajectories in
the group, ensuring that the selected trajectory is representative of
the cluster and avoiding extremely short or uninformative samples
(Fig. 3(d)). After sampling, we form the final sampled user trajec-
tory set j ∈ R10×L×2. Each trajectory ji is represented in frame-
wise displacement format, which is the same as Eq. 1. If the total
number of trajectories ntra j is less than 10, we apply zero padding
for unused trajectory entries.

In this work, we simplify the representation j by uniformly
resampling the trajectory along the temporal dimension, discard-
ing the per-frame representation of speed and orientation. This re-
duces the need for users to provide fine-grained motion guidance,
which can be tedious. By allowing rough scribbles, we enable pre-
views of clip-level animatics with diverse motion configurations.
Despite discarding precise frame timing, our model can still in-
fer suitable motion, including nonlinear and exaggerated move-
ments. This, along with the Gaussian-blurred dense trajectory map
J (Sect. 4.1), deliberately removes fine timing signatures and em-

Figure 3: The trajectory sampling process. To approximate user
trajectories, we sample from motion groups that are created by
clustering motion data from a sparse motion tracker.

pirically improves robustness to diverse, user-drawn trajectories at
inference.

4. Methodology

We design our framework for trajectory-based animation synthesis
in two stages. The first stage predicts sparse motion representations
from a single input frame and user-provided trajectories, generat-
ing a motion preview sequence via explicit warping. In the second
stage, this sequence is refined into high-quality anime videos lever-
aging ToonCrafter, an anime-specific video diffusion model to en-
sure enhanced visual quality. The overall illustration of the frame-
work is depicted in Fig. 4.

4.1. Motion Prediction Stage

In the first stage of motion prediction, given an input still image I ∈
RH×W×3 and the user-provided motion trajectory j ∈ R10×L×2,
our goal is to predict subsequent frame motions in the form of the
sparse motion representation f , as defined in Sect. 3.1. We use a 3D
diffusion U-Net [CZC∗24] to model and predict the sparse motion
over a temporal length of L = 16 frames. Since the tracker grid
operates at low resolution, we directly use the ground truth f as the
diffusion target f0 at t = 0, without applying latent compression.
The forward diffusion process [HJA20] gradually adds noise to f0
as:

ft =
√

ᾱt f0 +
√

1− ᾱt ϵ, ϵ∼N (0, I), (3)

where αt and ᾱt are diffusion scheduling constants. Here, sub-
scripts represent diffusion timesteps.

To integrate user-provided motion trajectories and other priors
into the diffusion pipeline, we design a fusion mechanism that
categorizes conditioning inputs into two types: those injected via
cross-attention [RBL∗22] and those concatenated directly to ft
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Figure 4: Methodology overview. The left block shows the computed conditions, the middle block represents the first stage of motion predic-
tion, and the right block depicts the second stage of anime frame synthesis.

along the channel dimension as inputs to the 3D U-Net. Regard-
ing cross-attention conditions, we first compute the CLIP embed-
ding [RKH∗21] Q of the input text prompt. In addition to that, we
also propose an improved encoding P to convert the user-specified
trajectory j to better distinguish individual trajectories and capture
precise positional information:

Positional Trajectory Representation (P ∈ R1024): For each tra-
jectory ji ∈ RL×2, we apply a transformation T to the displace-
ments starting from the second frame, where T is defined as:

T(x) = sign(x) ·
√

|x|/n, (4)

applied to the x- and y-direction displacements. Here, n = 16 is
a normalization factor that compresses the value distribution of
the displacements, regularizing the model to predict more stable
temporal displacements. Without this transformation, we observe
significant instability in the prediction of motion, which we hy-
pothesize is caused by the large numerical scale of displacement
values, making optimization more difficult. To encode the trans-
formed displacements, we compute their Fourier positional em-
beddings [MST∗21, LLW∗23] and use a learnable linear MLP to
project the sum of the positional embeddings and the raw features
into a 1024-dimensional representation P, to emphasize position
awareness in user trajectories for subsequent motion learning.

For conditions that will be concatenated with the input ft along
the channel dimension, we compute the following:

First Frame Features (Ie ∈ RL×H f ×Wf ×256): We extract features
from the first frame I using a learnable encoder with a structure sim-
ilar to the basic CNN encoder described in [KRG∗25]. The outputs
of the first four convolutional layers are reshaped to a uniform size
of H f ×W f and concatenated along the channel dimension. This
combined feature is then replicated on the temporal dimension for
L times.

SAM Features (S ∈ RL×H f ×Wf ×256): We extract the
SAM [KMR∗23] features from the input image I. The fea-
tures are then rescaled to H f ×W f , and replicated similarly across
the temporal dimension.

DragNUWA Trajectory Map (J ∈RL×H f ×Wf ×2): We incorporate
a DragNUWA compatible trajectory condition into the model using

the method specified in [YWL∗23]. Specifically, the user trajectory
is drawn as discrete points on a map and smoothed with a Gaussian
kernel of size K = 11 to form the dense trajectory map.

For training objectives, we find that directly predicting ground
truth motion f0 yields more stable training and motion displace-
ment predictions compared to the commonly used ϵ− noise pre-
diction. We denote the diffusion U-Net as fθ(P,Q, Ie,S,J, ft) and
define the training objective as:

L f = ∥ f0 − fθ (P,Q, Ie,S,J, ft)∥2
2 . (5)

During inference, we compute the inverse of the displacement
transformation T (Eq. 4) on the predicted motion f̂ to recover the
absolute displacements, which are then upscaled into a dense cor-
respondence map F . Using F , we warp the initial frame I into
a motion preview sequence W ∈ RL×H×W×3 by Softmax splat-
ting [NL20]. Although this splatted preview can exhibit minor
holes or local distortions due to the sparse motion representation,
it provides sufficient guidance for the second stage to inpaint and
regularize these imperfections, yielding smooth and visually clear
videos.

During our experiments in the construction of W , we some-
times observe temporal inconsistency in the predicted motion, lead-
ing to distorted results. This issue arises because the ground truth
CoTracker tracking is not inherently smooth due to the complex
motion patterns of animations. Additionally, occlusions can intro-
duce outlier tracking points that mislead the model during training.
Moreover, our dataset of approximately 500k video clips may still
be insufficient to fully generalize the motion prediction model. To
address this, we propose a regularization technique to improve the
temporal stability in motion predictions. Specifically, we generate
multiple predictions under the same input conditions but initialize
them with different noise values fT ∼ N (0, I), resulting in K dif-
ferent motion predictions. The final displacements are computed
as their averages. In our experiments, we set K = 4, but users can
adjust this smoothing parameter. Increasing K results in smoother
motion with fewer distortions, though it can slightly reduce the ad-
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herence of the model to user-provided trajectories; quantitative ef-
fects of varying K are provided in the supplementary.

4.2. Frame Synthesis Stage

We design the second stage as a frame synthesis module. In this
stage, we use the motion preview sequence W as a condition
to guide a video diffusion model to refine artifacts and distor-
tions within W . This process helps produce smooth-motion videos
with enhanced realism and improved completeness in both ap-
pearance and motion. Since the scale of our dataset is insuffi-
cient to train a tailored video diffusion model from scratch, we
build upon pre-trained video diffusion models as a strong founda-
tion. We selected ToonCrafter [XLX∗24] as our backbone model
due to its extensive prior knowledge of anime and cartoon-specific
characteristics, acquired through fine-tuning on curated anime
datasets. Furthermore, ToonCrafter inherits its architecture from
VideoCrafter [CZC∗24], which is well suited to incorporate ad-
ditional user conditions. Although we considered more advanced
models, such as DiT [YTZ∗24, KTZ∗25], these alternatives posed
challenges in fine-tuning and adapting them to the conditional syn-
thesis of anime videos with a limited amount of data. The discrep-
ancy between cartoons/anime and natural videos makes the motion
preview conditioned fine-tuning of these larger models very chal-
lenging, leading to model collapse, or undesired results.

For fine-tuning of the ToonCrafter model, we freeze the tem-
poral layers of its 3D U-Net and focus on regularizing appear-
ance through the spatial layers of the warped motion preview W .
This strategy is inspired by the original ToonCrafter implementa-
tion, which suggests that training temporal layers with limited data
may result in motion corruption. To construct the model, we utilize
the pre-trained ToonCrafter 3D U-Net as the backbone, with addi-
tional conditions integrated during fine-tuning. Specifically, given
a 3-channel video W ∈ RL×H×W×3 with a video length of L = 16,
we encode it using the ToonCrafter VAE E to obtain the latent rep-
resentation z = E(x),z ∈ RL×h×w×4. The noise latent zt at time t
is then computed using the forward diffusion process (Eq. 3).

To incorporate user-specified conditions, we concatenate the pre-
dicted upscaled flow map F ∈RL×H×W×2 and the motion preview
W ∈ RL×H×W×3 as additional inputs to the 3D diffusion U-Net.
Both F and W are encoded by the VAE encoder E and concatenated
with the noise latent zt along the channel dimension. The flow map
F provides implicit motion guidance by indicating motion direc-
tions, while the motion preview W offers rough appearance hints
via warped frames. This reduces the learning difficulty for the spa-
tial layers by focusing only on refining errors in W , such as occlu-
sions, rough estimations, or inaccuracies in the sparse flow f pre-
dicted during the first stage. Finally, we inject the positional trajec-
tory representations P (defined in Sect. 4.1) and the CLIP-encoded
text embeddings Q into the model via cross-attention. These con-
ditions enable the model to align the generated motion with user-
provided trajectories while preserving animation coherence and vi-
sual quality. With the settings above, we will be able to write down
the second-stage loss as:

Lz = ∥ϵ− ϵθ (P,Q, I,W,F)∥2
2 . (6)

Last, since the ToonCrafter VAE requires bidirectional inputs to
decode the predicted latent z0 into the final video output, but we
only have the first frame as ground truth, we use a standard Dy-
namiCrafter [XXZ∗25] VAE decoder to decode the last frame la-
tent zL−1

0 . This decoded last frame, combined with the first frame
ground truth, serves as the bidirectional reference for decoding the
full video sequence.

5. Experiments

5.1. Experimental Setup

Dataset To form our dataset, we collected 99,884 diverse anima-
tion videos from the Sakugabooru [sT25] video collection. Using
CoTracker [KRG∗25], we performed keypoint-based motion track-
ing and cutscene detection on a predefined grid of array points. The
cutscenes were separated according to the continuity of the visibil-
ity of the tracker points, rather than relying on the commonly used
PySceneDetect [Cas24], for a higher precision. For more details on
the data preparation process, please refer to the supplementary ma-
terial. Ultimately, we collected 533,344 single-cutscene video clips,
with 2,500 clips held out for validation and 3,000 clips for testing.
To annotate each clip, captions for the middle frame were gener-
ated using BLIP-2 [LLSH23], following the same methodology as
ToonCrafter. We have the dataset and the annotations uploaded on
the project website.

Baseline Setup For our comparative evaluation, we select three
baseline models: DragNUWA [YWL∗23], Motion-I2V [SHW∗24],
and MotionCtrl [WYW∗24]. To disentangle the contributions of
our proposed dataset from those of the model architecture, we es-
tablish two experimental settings for each baseline. The first set-
ting utilizes the official pretrained models, whereas the second in-
volves fine-tuning them on our dataset. For the fine-tuning of Drag-
NUWA and MotionCtrl, we sample user trajectory inputs by gen-
erating motion conditions using our proposed trajectory sampling
technique. In the specific case of MotionCtrl, this involves inject-
ing its OMCM module into our ToonCrafter model to serve as an
implicit motion condition and jointly training the module with the
main diffusion model.

5.2. Comparison with Exsiting Methods

Quantitative Evaluation We first perform a quantitative evalua-
tion using FVD [UvSK∗19] and LPIPS [ZIE∗18] to assess proxim-
ity to the anime video frames and perceptual quality. Additionally,
since frame synthesis with guidance from ground truth trajectories
can be seen as a reconstruction task, we evaluate the average PSNR
and SSIM [HZ10] to measure alignment with trajectory conditions.
To assess the appearance quality of individual frames, we also cal-
culate the FID metric [HRU∗17] by comparing generated frames
against ground truth. We used the test set of 3000 new video clips
and show the results in Tab. 1.

The results highlight two main insights. First, the efficacy of our
dataset is demonstrated by the performance improvements when
DragNUWA and MotionCtrl are finetuned on it, validating its value
for capturing cartoon and anime motion. Second, under the same
data conditions, our method surpasses the finetuned counterparts
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Table 1: Quantitative comparison with baseline models. ↓ = lower
is better, and ↑ = higher is better. Bold indicates best value.

Method LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ FID ↓

DragNUWA
Vanilla 0.54 1675.8 12.4 0.53 10.3
Finetuned 0.49 1219.4 13.5 0.58 9.5

MotionCtrl
Vanilla 0.69 1891.4 10.7 0.60 42.7
Finetuned 0.48 1264.2 13.8 0.61 13.4
ToonCrafter 0.48 1232.3 14.3 0.60 11.3

Motion-I2V
Vanilla 0.64 1766.9 11.0 0.41 30.0
Finetuned 0.65 1608.8 11.1 0.42 27.4

Ours 0.44 1119.6 15.1 0.63 7.1

across all metrics. To validate that these gains are due to our frame-
work’s architecture and not just the choice of a pretrained generator
(ToonCrafter), we created a variant of MotionCtrl by substituting
its video synthesis module with ToonCrafter’s and finetuning it on
our dataset. This hybrid configuration improved on the original Mo-
tionCtrl but did not match our method’s performance. Overall, the
statistics show the superiority of our two-stage framework, which
decouples sparse motion prediction from frame synthesis, proving
more effective than end-to-end approaches.

In contrast to other baselines, Motion-I2V failed to adapt to the
target domain. The pretrained model lacked generalization, and
finetuning did not rectify this. We believe the AnimateDiff com-
ponent of Motion-I2V is less suited for domain adaptation in this
context, limiting its ability to learn the specialized motion patterns
for anime synthesis.

Visual Comparison on Trajectory-based Anime Synthesis We
present a visual comparison of our method against key competi-
tors, with further video results on our supplementary webpage. We
encourage readers to view the videos, as they best illustrate tem-
poral dynamics and artifacts. All comparisons use test images un-
seen during training. We overlay the uniformly replayed progres-
sion on the results to demonstrate trajectory adherence, judged by
whether the driven regions’ motion follows the spatial course of
each curve over time while preserving appearance. Note that our
model focuses on producing harmonious, deformation-aware, and
clean anime motion; exact displacement amplitudes may be moder-
ated when strict following would introduce distortions or incoher-
ent poses.

Without fine-tuning on our anime dataset, the baseline competi-
tor models struggle significantly (Fig. 7 top). DragNUWA fails to
generate coherent motion, and MotionCtrl exhibits severe content
drift, reflected in their weaker quantitative scores. For a more equi-
table comparison, we evaluate the fine-tuned versions of the base-
line models. Even after fine-tuning, DragNUWA often produces vi-
sual artifacts like facial distortions (Fig. 6), which we hypothesize
is due to a lack of explicit and robust temporal modeling. On the
other hand, MotionCtrl better preserves structures but tends to pro-

duce dull motions that simply pan objects without deformations or
pose changes (Fig. 7 bottom, Fig. 8 top), and sometimes still leads
to distortions. We believe these methods are limited by their re-
liance on implicit trajectory guidance, which may not be enough
to translate motion hints into plausible object motion and deforma-
tion. Additionally, these models lack semantic awareness; in com-
parison, our model leverages SAM features to better isolate sub-
jects during prediction. For Motion-I2V, it may maintain structure
and produce anime-like motion if the input image is close to nat-
ural photos; however, appearance and color cannot be maintained
over time, and the overall scene composition may gradually change,
a known limitation. Furthermore, its performance depends heavily
on the generalization of its underlying AnimateDiff model, which
we find challenging to adapt to diverse anime styles.

Motion Manga and Vector Graphics We also evaluate our
model’s generalization ability on non-photorealistic media, such as
vector-like graphics, manga and storyboard sketches. When applied
to vector-like graphics, our method produces more natural motion,
such as simulating the propulsive pushes of a jellyfish moving for-
ward (Fig. 7 bottom). In contrast, the other methods either simply
pan the jellyfish or fail to generalize on the input vector graphics.
For manga inputs, the special effects of the so-called speed line ef-
fects are widely used with parallel straight or curved lines to convey
motion, energy, or intensity in a scene (as depicted near the arm of
the boy in Fig. 8). These lines illustrate the direction and speed of
movement to emphasize dramatic actions or emotions. By provid-
ing trajectories aligned with the speed line directions, our model is
able to produce depiction of dynamic scenes while faithfully cap-
tures the stylistic elements of manga, such as artist-drawn scribbles
and screentones. In comparison, DragNUWA provides naive mo-
tions that merely pan the underlying region in the specified direc-
tions and does not have any motion or expression changes on the
character’s face. MotionCtrl and Motion-I2V, on the other hand,
fail to generalize to manga-style appearances.

Finally, we demonstrate our model’s utility in a challenging pre-
production scenario using a hand-drawn storyboard sketch (Fig. 8
bottom). Traditionally, artists must mentally conceptualize motion,
camera paths, and composition to manually draw a sequence of
rough sketches, which is a labor-intensive process. Our approach
streamlines this workflow significantly. By simply providing a mo-
tion trajectory, an artist can rapidly generate dynamic previews for
different creative ideas. The resulting animation can serve as a di-
rect visual reference for subsequent frames, reducing the cognitive
load and time spent iterating on the storyboard. In stark contrast,
the baseline models fail to produce any meaningful frames from
this challenging and sparse input, underscoring the unique general-
ization capability of our method.

5.3. Ablation Studies

We conducted ablation studies to evaluate the importance of our
framework design. First, suppose that we remove the first stage to
predict explicit motion but rely solely on user-specified trajecto-
ries to guide anime synthesis, the framework becomes equivalent
to the MotionCtrl design, with performance already reflected in
Tab. 1. This demonstrates the importance of explicit motion pre-
diction for anime synthesis. In addition, we evaluated alternative

© 2025 The Author(s).
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Table 2: Ablation study results for our framework.

Setup LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ FID ↓

Predict f as
[LTSH24]

0.47 1184.2 14.5 0.61 8.9

Predict f as
Optical flow

0.48 1364.1 14.4 0.60 8.4

Stage 1 w/o P 0.45 1154.3 15.0 0.63 7.0
Stage 1 w/o S 0.45 1158.7 14.5 0.62 8.7
Ours Full 0.44 1119.6 15.1 0.63 7.1

configurations for the first stage of motion prediction. We experi-
mented with two prominent motion representations: (a) 4D motion
volumes, following the methodology of [LTSH24], and (b) dense
optical flow. For these experiments, the motion preview W is pro-
duced by warping the input frame I based on the predicted motion
representation. To facilitate optical flow comparison, we establish
a ground truth by fine-tuning the GMFlow model [XZC∗22] on the
AnimeRun dataset [LLL∗22]. We demonstrate the results in Tab. 2,
and the supplementary website provides additional qualitative ex-
amples. In total, both alternative configurations failed to match the
performance of our sparse CoTracker representation. This high-
lights a fundamental limitation of dense methods in this domain:
the sparse textures inherent to cartoon and animation styles can-
not reliably support the calculation of a dense correspondence field
without introducing significant errors.

We also evaluate the designs of the building blocks of our meth-
ods. This includes an ablation study on: (a) the positional trajectory
embedding P; and (b) the SAM feature S. We find that removing the
positional trajectory embedding causes overly exaggerated motion,
though the frame appearances usually remain intact. In addition,
removing SAM feature introduces distortions and visual artifacts,
compromising the structural integrity of the animated regions.

5.4. User Study

To assess the perceptual quality and trajectory adherence of
our generated animations, we conducted a user study comparing
our method against three leading competitors: MotionCtrl, Drag-
NUWA, and Motion-I2V. For the study, we recruited 16 partici-
pants and presented them with 23 sets of results. Participants eval-
uated complete animations, not static frames. To ensure a fair com-
parison, each set contained time-synced videos generated from the
same input trajectory by all four methods. The videos were pre-
sented in a randomized order to mitigate presentation bias. Partici-
pants were asked to rank the animations from best (1) to worst (4)
based on overall visual quality and how well the motion followed
the intended path. The results, summarized in Tab. 3, show that our
method achieved the highest average rank, indicating a clear user
preference in terms of visual fidelity and motion control. Refer to
the supplemetary material for additional comparisons.

5.5. Limitations

While our method effectively produces smooth motion with pose
changes and deformations, we observe certain limitations in how

Table 3: User study results comparing our method against baseline
models. Lower average rank indicates better performance.

Ours MotionCtrl DragNUWA Motion-I2V

Rank ↓ 1.33 2.36 2.71 3.60

Figure 5: Limitation of our proposed framework. The intended mo-
tion that directs the girl moving by the bus is misinterpreted as pose
changes. Prompt: “A girl is walking by a bus”.

the refinement stage handles user-specified trajectories. Specifi-
cally, the refinement stage may overly recover and hallucinate de-
tails, which can cause the movement of specific regions to devi-
ate from the exact distance and direction specified by the trajec-
tory (the second row of Fig. 1). This reflects a trade-off between
achieving high visual quality and maintaining strict adherence to
user-provided trajectories, as discussed in Sect. 4.1.

Additionally, our method may not always clearly interpret the
intent behind a user-specified trajectory. For example, when a tra-
jectory is placed on a subject, the system can misinterpret a sim-
ple translation or panning motion as a hint for deformation or pose
changes, as shown in Fig. 5. To address this, users may need to
provide multiple parallel trajectories on the same object to indicate
that the motion is primarily positional. We consider it as a future
work, to allow the system to distinguish between different types of
motion guidance.

6. Conclusion

We propose a two-stage framework for trajectory-guided anime
video synthesis, combining explicit motion prediction with a re-
finement stage using video diffusion models. The key innovation
of our method lies in an efficient sparse motion representation and
estimation technique, to produce smooth, high-quality anime video
clips while preserving stylistic elements. Experiments show that
our approach outperforms existing methods in both motion fidelity
and visual quality on a wide variety of 2D media.
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Figure 7: Visual comparison with vanilla models (top) and results on vector graphics (bottom). All trajectories are provided from human
testers.
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Figure 8: Visual comparison on trajectory-based motion synthesis on manga frames and storyboard sketches. All trajectories are provided
from human testers.
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MONS M.: Textoons: practical texture mapping for hand-drawn car-
toon animations. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Non-Photorealistic Animation and Rendering (New York,
NY, USA, 2011), NPAR ’11, Association for Computing Machin-
ery, p. 75–84. URL: https://doi.org/10.1145/2024676.
2024689, doi:10.1145/2024676.2024689. 3

[SGX∗23] SIYAO L., GU T., XIAO W., DING H., LIU Z., LOY C. C.:
Deep geometrized cartoon line inbetweening. In 2023 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (2023), pp. 7257–7266.
doi:10.1109/ICCV51070.2023.00670. 3

[SHL∗23] SHI X., HUANG Z., LI D., ZHANG M., CHEUNG K. C., SEE
S., QIN H., DAI J., LI H.: Flowformer++: Masked cost volume au-
toencoding for pretraining optical flow estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 1599–1610. 3

[SHW∗24] SHI X., HUANG Z., WANG F.-Y., BIAN W., LI D., ZHANG
Y., ZHANG M., CHEUNG K. C., SEE S., QIN H., DAI J., LI H.:
Motion-i2v: Consistent and controllable image-to-video generation with
explicit motion modeling. In ACM SIGGRAPH 2024 Conference Papers
(New York, NY, USA, 2024), SIGGRAPH ’24, Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/3641519.
3657497, doi:10.1145/3641519.3657497. 2, 3, 4, 6

[sT25] SAKUGABOORU TEAM: sakugabooru. https:
//sakugabooru.com/, 2025. A booru dedicated to sakuga
videos and images. Serving 157,282 posts as of retrieval. Powered by
Moebooru 6.0.0. URL: https://sakugabooru.com/. 6

[SYLK18] SUN D., YANG X., LIU M.-Y., KAUTZ J.: PWC-Net: CNNs
for optical flow using pyramid, warping, and cost volume. 3

[SZC∗23] SHI M., ZHANG J.-Q., CHEN S.-Y., GAO L., LAI Y.-K.,
ZHANG F.-L.: Reference-based deep line art video colorization. IEEE
Transactions on Visualization and Computer Graphics 29, 6 (2023),
2965–2979. doi:10.1109/TVCG.2022.3146000. 3

[SZY∗21] SIYAO L., ZHAO S., YU W., SUN W., METAXAS D., LOY
C. C., LIU Z.: Deep animation video interpolation in the wild. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition (2021), pp. 6587–6595. 3

[TD20] TEED Z., DENG J.: RAFT: Recurrent all-pairs field transforms
for optical flow. In Computer Vision – ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II (2020),
Springer, pp. 402–419. 3

[UvSK∗19] UNTERTHINER T., VAN STEENKISTE S., KURACH K.,
MARINIER R., MICHALSKI M., GELLY S.: Towards accurate genera-
tive models of video: A new metric & challenges, 2019. URL: https:
//arxiv.org/abs/1812.01717, arXiv:1812.01717. 6

[WHF∗25] WANG A., HUANG H., FANG Z., YANG Y., MA C.: ATI:
Any trajectory instruction for controllable video generation. arXiv
preprint arXiv:2505.22944 (2025). 3

[WLG∗24] WU W., LI Z., GU Y., ZHAO R., HE Y., ZHANG D. J.,
SHOU M. Z., LI Y., GAO T., ZHANG D.: Draganything: Motion con-
trol for anything using entity representation. In European Conference on
Computer Vision (2024), Springer, pp. 331–348. 3

[WSML24] WU R., SU W., MA K., LIAO J.: Aniclipart: Clipart anima-
tion with text-to-video priors. International Journal of Computer Vision
(2024), 1–17. 3

[WWZ∗24] WANG W., WANG Q., ZHENG K., OUYANG H., CHEN Z.,
GONG B., CHEN H., SHEN Y., SHEN C.: Framer: Interactive video
interpolation. arXiv preprint https://arxiv.org/abs/2410.18978 (2024). 3

[WYW∗24] WANG Z., YUAN Z., WANG X., LI Y., CHEN T., XIA M.,
LUO P., SHAN Y.: Motionctrl: A unified and flexible motion controller
for video generation. In ACM SIGGRAPH 2024 Conference Papers (New
York, NY, USA, 2024), SIGGRAPH ’24, Association for Computing
Machinery. doi:10.1145/3641519.3657518. 2, 3, 6

[XLX∗24] XING J., LIU H., XIA M., ZHANG Y., WANG X., SHAN
Y., WONG T.-T.: Tooncrafter: Generative cartoon interpolation. ACM
Transactions on Graphics (TOG) 43, 6 (2024), 1–11. 2, 3, 6

[XXZ∗25] XING J., XIA M., ZHANG Y., CHEN H., YU W., LIU H.,
LIU G., WANG X., SHAN Y., WONG T.-T.: Dynamicrafter: Animating
open-domain images with video diffusion priors. In European Confer-
ence on Computer Vision (2025), Springer, pp. 399–417. 6

[XZC∗22] XU H., ZHANG J., CAI J., REZATOFIGHI H., TAO D.: Gm-
flow: Learning optical flow via global matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2022), pp. 8121–8130. 3, 8

[XZJJ25] XIE T., ZHAO Y., JIANG Y., JIANG C.: Physanimator:
Physics-guided generative cartoon animation. In Proceedings of the
Computer Vision and Pattern Recognition Conference (CVPR) (June
2025), pp. 10793–10804. 3

[YTZ∗24] YANG Z., TENG J., ZHENG W., DING M., HUANG S., XU J.,
YANG Y., HONG W., ZHANG X., FENG G., ET AL.: Cogvideox: Text-
to-video diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072 (2024). 3, 6

[YWL∗23] YIN S., WU C., LIANG J., SHI J., LI H., MING G., DUAN
N.: Dragnuwa: Fine-grained control in video generation by integrating
text, image, and trajectory. arXiv preprint arXiv:2308.08089 (2023). 2,
3, 5, 6

[ZIE∗18] ZHANG R., ISOLA P., EFROS A. A., SHECHTMAN E., WANG
O.: The unreasonable effectiveness of deep features as a perceptual met-
ric. In CVPR (2018). 6

[ZLL∗25] ZHANG Z., LIAO J., LI M., DAI Z., QIU B., ZHU S., QIN
L., WANG W.: Tora: Trajectory-oriented diffusion transformer for video
generation. In Proceedings of the Computer Vision and Pattern Recog-
nition Conference (2025), pp. 2063–2073. 3

[ZLWH16] ZHU H., LIU X., WONG T.-T., HENG P.-A.: Globally op-
timal toon tracking. ACM Transactions on Graphics (SIGGRAPH 2016
issue) 35, 4 (July 2016), 75:1–75:10. 3

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1145/2024676.2024689
https://doi.org/10.1145/2024676.2024689
https://doi.org/10.1145/2024676.2024689
https://doi.org/10.1109/ICCV51070.2023.00670
https://doi.org/10.1145/3641519.3657497
https://doi.org/10.1145/3641519.3657497
https://doi.org/10.1145/3641519.3657497
https://sakugabooru.com/
https://sakugabooru.com/
https://sakugabooru.com/
https://doi.org/10.1109/TVCG.2022.3146000
https://arxiv.org/abs/1812.01717
https://arxiv.org/abs/1812.01717
http://arxiv.org/abs/1812.01717
https://doi.org/10.1145/3641519.3657518



